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Many asset pricing models assume that expected returns are driven by common factors. We formu-
late a model where returns are driven by a string, and no-arbitrage restricts each expected return to
capture the asset’s granular exposure to all other asset returns: a correlation premium. The model
predicts fresh properties for big stocks, which display higher connectivity in bad times, but also
work as correlation hedges: they contribute to a negative fraction of the correlation premium, and
portfolios that are more exposed to them command a lower premium. The string model performs at
least as well as many existing linear factor models.

Keywords: String models; Correlation premium; Premium for correlation risk; Cross-section of
returns; Big stocks; Arbitrage pricing; Implied correlation

1. Introduction

The inability of the CAPM to explain the cross-section of
expected returns has led to a proliferation of models driven
by factors that have recently been the focus of criticism
and renewed rigorous statistical scrutiny (see, e.g. Harvey
et al. 2016). This paper proposes a new arbitrage pricing
model in which the cross-section of expected returns links
to arguably one amongst the simplest concepts in finan-
cial economics: correlation. The distinguishing feature of
our approach is that we avoid making reference to factors
while explaining asset correlations. Instead, correlations of
each asset return with all remaining asset returns are the
building block in our framework. That is, in our model, cor-
relations do not result from the assumption of exogenously
given ‘pricing factors’. Rather, all correlations are the primi-
tives of the model, and they jointly determine the whole set of
no-arbitrage restrictions amongst all asset returns.

Correlation has a long history in asset pricing, although
the typical approach has predominantly been to model asset
returns in frameworks where correlation and volatility are
intimately related. Consider, for example, the seminal Mer-
ton (1971) model, in which asset returns are driven by
Brownian motions. In that model, the assets correlations are
pre-determined by the assumptions made on the assets betas;

∗Corresponding author. Email: antonio.mele@usi.ch

that is, the price of correlation risk is a function of the ‘lamb-
das’. Ideally, instead, we would like to disentangle the price
of correlation from these lambdas, that is, we would like to
disentangle volatility from correlation.

An alternative model is one in which asset returns are
driven by shocks that enable one to separate volatility from
correlation. We rely on random field models, or stochastic
string models, to think about correlation as being determined
in this independent way.† Random field models were intro-
duced in finance by Kennedy (1994, 1997) to model the
term structure of interest rates, and Goldstein (2000) and
Santa-Clara and Sornette (2001) provide extensions or a more
general framework in this domain. Tsoulouvi (2005) applies
random field models to derivative pricing. Our paper ana-
lyzes how random field models can be employed to explain
the cross-section of the expected equity returns. Compared to
other approaches, ours proposes, then, a new way to model
asset returns. Our model is not built up around factors (be
they observed or not). We model assets correlations directly,
as explained. String models are particularly useful to achieve
this goal.

The model works as follows. Asset returns are driven by the
realizations of a string. These realizations lead asset returns to

† If Brownian motions can be thought of as particles that move ran-
domly over time, a two-parameter random field can be thought of
as the random motion of a string. A three-parameter random field is
also known as a membrane. This paper deals with strings.
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co-move, and these co-movements become sources of priced
risk: for any asset, the co-movements of its returns with all
remaining asset returns receive a compensation. We derive
the arbitrage restrictions amongst all asset returns and charac-
terize this compensation: the expected excess return on each
asset is the sum of the correlations of this return with all the
remaining returns, weighted by some ‘premium function’.

Thus, the expected excess return on any asset reflects
an average premium required to compensate for the asset
returns granular exposure to all remaining returns. We term
the result correlation premium. We test whether, indeed, the
cross-section of the expected returns is explained by the cross-
section of the correlation premia. We find that the model pro-
vides a reasonable match of the cross-section of the expected
returns, for a number of portfolios sorted through book-to-
market, momentum and additional standard characteristics, at
least comparable to well-known four- or five- linear factor
models (e.g. Fama and French 2015). Furthermore, our model
displays additional properties regarding returns predictability
and the time-series of assets correlations, both realized and
risk-adjusted, as we now explain.

In principle, our model does not require time-varying cor-
relations: even if asset correlations were all constant, the
cross-section of the expected excess returns would be a set
of non-zero correlation premia. However, in practice, corre-
lations change over time. We model time-variation in these
correlations as being driven by a pro-cyclical state variable,†
such that correlations increase in bad times, i.e. for low real-
izations of this state variable. The cross-section of correlation
premia and, then, the expected excess returns, are predictable,
driven by the state variable. We reconstruct the dynamics of
the state variable as a by-product of the model estimation
method, based on moment conditions solved in closed-form.
The model predicts that, for many portfolios, the cross-section
of expected excess returns are countercyclical and asymmet-
rically related to market conditions: they increase more in
bad times than they decrease in good times. We also discuss
instances where this relation is reversed: in these cases, some
assets may be particularly good hedges in bad times, and port-
folios that are particularly exposed to them may command
premia that decrease in times of increased market correlations.
We find that big size stocks display such properties. More gen-
erally, we find that big stocks contribute to a negative fraction
of the average correlation premium, such that portfolios that
are more exposed to them command a lower premium.

Our moment conditions are based on time-series proper-
ties including both realized and option-implied correlations.
The model, then, provides additional predictions regarding the
random nature of assets correlations. In particular, the risk
of changing correlations may lead, and our empirical find-
ings suggest that they do lead, to a premium for correlation
risk, the difference between risk-adjusted (i.e. option-implied)
and realized correlations on S&P 500, a ‘global premium for
correlation risk’.‡

† Thus, we rely on a factor model for asset returns correlations. The
point of the paper is that we do not rely on a factor model for the
cross-section of asset returns.
‡ The premium for correlation risk compensates for the risk that cor-
relations are random. Furthermore, in this paper, we are referring

Our model predicts that realized correlations and premia
for correlation risk are inversely related. In other words, risk-
adjusted correlations move, on average, less than realized
correlations in reaction to a changing market environment.
This conclusion rationalizes the framework of analysis in the
empirical literature of option-implied heterogenous correla-
tions (see, e.g. Buss and Vilkov 2012, Mueller et al. 2017
in the foreign exchange space) and it, thus, stands, as a fact
that differs from the evidence available from equity volatil-
ity markets (reviewed in Section 4.4), by which volatility risk
premia are countercyclical. We emphasize that we provide a
theoretical model for the premium for correlation risk and that
this model also provides predictions on the term structure of
premia for correlation risk.

Remarkably, then, our model is able to fit both the premium
for correlation risk resulting in derivative markets (on S&P
500), and cross-sections of asset returns that are not directly
related to S&P 500. For example, the model is given a com-
fortable support within the international stock universe, such
as the global ME-BTM 5 × 5 portfolio. Therefore, the model
displays potential to explain premia for other asset classes, by
just relying on our global premium for correlation risk. In one
of the technical appendixes, we focus on supplying additional
evidence in the equity space, on a variety of S&P 500 sectors
and index-based portfolios. The evidence confirms that our
model performance is at least as good as many well-known
linear factor models.

Our paper links to several strands of the asset pricing lit-
erature. First, and perhaps most important, our paper offers
a complementary view to the rich field of factor modeling
and testing of the cross-section of expected returns. Since
Ross’ (1976) seminal paper on arbitrage pricing, the num-
ber of published factors has exceeded several hundreds (as
reported by Harvey et al. 2016). As a result, researchers
now carefully concentrate on designing tests to evaluate the
asset pricing implications of new factors (see, e.g. Feng
et al. 2020, amongst others). Our contribution is comple-
mentary to this new trend, as we are not proposing new
factors, but simply developing a granular account of asset
correlations.

By investigating the cross-sectional pricing implications of
a string model, we also provide a fresh interpretation of size
characteristics (Banz 1981) and the related SMB factor (Fama
and French 1993).§ We find that in bad times, big stocks are
those all other stocks become more connected to, as discussed;
because big stocks are also safer than others, assets that are
more exposed to big stocks command a lower premium. Small

to the cross-section of expected returns (our main focus) as cor-
relation premia to emphasize the role correlation plays within our
string model. As noted earlier, our model predicts correlation premia
could be non-zero even if correlations are constant (in which case the
premium for correlation risk would be zero).
§ Numerous studies have devoted their attention to size character-
istics and variations of the related factor. To name just a few, both
Chan et al. (1985), and Chan and Chen (1991) looked at charac-
teristics of small and large firms and the firm size effect; Fama
and French (1992) analyzed the cross-section of stock returns ver-
sus characteristics; Fama and French (1995) connected size effects
to the properties of firms’ earnings. Later studies such as Campbell
et al. (2008) more specifically focussed on rationalizing size effects
by connecting them to financial distress risk.
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stocks display opposite properties. Thus, a size premium may
be seen as a ‘correlation wedge’ that small stocks have with
respect to big stocks.

We model the riskiness of a security by relating this same
security returns to all other available securities returns. This
property, ‘connectivity’, suggests a parallel with the empir-
ical literature of networks in finance, whereby firms in the
financial marketplace are interlinked through network effects.
A number of papers study the effects of firm-level shocks
and their propagation through the economic system (see,
e.g. Acemoglu et al. 2012, Barrot and Sauvagnat 2016, Her-
skovic 2018; amongst others). Network effects have also been
suggested to explain contagion in financial markets (see, e.g.
the early survey of Allen and Babus (2009)) or correlated
trading (e.g. Colla and Mele 2010, Ozsoylev et al. 2014),
and motivated new and several gauges of systemic risk (e.g.
Billio et al. 2012) as well as asset pricing models that incorpo-
rate network effects (Billio et al. 2017). Our approach differs
from these models due to our emphasis on modeling stochas-
tic correlations based on strings rather than on the traditional
input-output network models.

Modeling correlation in financial markets has been the
focus of an extensive research agenda over the last decades.
Engle (2009) provides an early survey on methods and appli-
cations. Our model, based on strings, treats the dynamics of
correlations in a simple, parsimonious way, assuming cor-
relations are driven by a common, unobserved force. While
simple, our model deals with correlation dynamics under both
the physical and risk-neutral probabilities, and predicts an
empirically plausible premium for correlation risk. Note that
the literature on the premium for correlation risk in equity
and option markets is quite large and goes back to at least
Driessen et al. (2009). Buss and Vilkov (2012), Buraschi et
al. (2014) and Mueller et al. (2017) provide relatively more
recent contributions, and Faria et al. (2022) contain a long
list of additional relevant contributions to this topic. Finally,
our paper assigns correlation a central role in explaining
asset exposure and cross-sectional pricing properties, which
go beyond those already studied in option markets. An area
of future research is to integrate good parametric and non-
parametric models of correlations into our string-based asset
pricing framework.

The paper is organized as follows. The next section con-
tains high level assumptions and general no-arbitrage restric-
tions. Section 3 provides model specifications for the purpose
of empirical work. Section 4 develops cross-equation restric-
tions and contains our empirical results. Section 5 concludes.
Appendix 1 contains technical details omitted from the main
text, Appendix 2 develops model extensions, and Appendix 3
provides additional empirical evidence not discussed in the
main text.

2. Asset prices as strings

2.1. Primitives

We consider a market with a continuum of assets in (0, 1),
and assume that each asset return is exposed to all remain-
ing asset returns through the realization of a ‘string’. Previous

models with a continuum of assets include those formulated
by Al-Najjar (1998) in a static exact factor framework and
Gagliardini et al. (2016) in a conditional approximate fac-
tor setting, amongst others. Our approach is novel precisely
because we are not relying on any factor structure, but on
strings.

The basic economic intuition underlying a string model for
asset returns is that, in this model, each asset return is driven
by its own source of uncertainty without implying that all
asset returns are uncorrelated. Precisely, let Pt(i) be the price
of the i-th asset at t and Dt(i) be its instantaneous dividend. We
assume that the realized returns on each asset-i are solutions
to

dR̃t (i) ≡ dPt (i) + Dt (i) dt

Pt (i)

= E (yt, i) dt + σ (yt, i) dZt (i) , i ∈ (0, 1) , (1)

where R̃t(i) is the cumulative return on asset-i, Zt(i),
the string, is a process continuous in i and t, and such
that E(dZt(i)) = 0, var(dZt(i)) = dt, and cov(dZt(i) dZt(j)) =
ρ(yt, i, j) dt, for some function ρ taking values in (−1, +1),
and some state vector yt, to be discussed below; the volatil-
ity term, σ(y, i) is a continuous function of y and i, and
ρ(y, i, j), a ‘string correlation function’, is also continuous;
finally, E(y, i) is the expected return, determined below (see
Proposition 2.1). The function σ(y, i) summarizes the asset-i
return exposure to how the very same asset return co-varies
with all remaining asset returns. It, thus, plays a role similar
to the familiar ‘beta’ in traditional factor models.

The notable feature of the model is that returns are risky
because the realization of the string leads all asset returns
to co-move; in standard models, instead, asset returns co-
move, driven by the realization of common factors. In the next
section, we explain how the random fluctuations of the string
become priced sources of risk, that is, how the expected return
on any asset relates to the price of risk of correlation with all
other assets. Furthermore, Section 2.4 explains that our model
is quite distinct from the standard CAPM, which also pre-
dicts that each asset expected returns relate to all other assets’
returns (through the market portfolio).

What makes a string model a good model compared to
a standard Brownian model? The property mentioned at the
beginning of this section: each asset return is driven ‘by its
own shock’ and, yet, each asset return may well be correlated
with all other asset returns. This property, we now explain,
enables us to free up the notion of correlation from that of
volatility. Note, indeed, that according to the string model (1),
the (square of) volatility of any asset-i is

vol2(dR̃t (i)) ≡ σ 2 (yt, i) dt, (2)

and the correlation between any two assets i and j is

corr(dR̃t (i) , dR̃t (j)) ≡ ρ (yt, i, j) . (3)

That is, a string model relies on two distinct definitions of
volatility and correlation: volatility and correlation are disen-
tangled. This property does not hold for a Brownian model.
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To review this, consider an asset market driven by Brownian
motions, by which

dR̃t (i) = Eb (yt, i) dt + v (yt, i) dWt, i = 1, . . . , m, (4)

where Wt is a d-dimensional standard Brownian motion,
Eb(yt, i) is the expected return for asset-i and, finally, v(yt, i) is
the exposure of the asset-i returns to Wt, i.e. volatility. In this
model, it is impossible to have each asset return driven ‘by
its own Brownian motion’, except of course in the uninterest-
ing case where asset returns are all mutually uncorrelated. The
correlation between asset i and j returns is indeed

corr(dR̃t (i) , dR̃t (j)) ≡
∑d

�=1 v� (yt, i) v� (yt, j)

‖v (yt, i)‖ ‖v (yt, j)‖ ,

where v�(·, j) denotes the �-th element of vector v(·, i). Note,
further, that the correlation matrix is degenerate as soon as
m > d.

As already pointed out by Santa-Clara and Sornette (2001),
it is very difficult to specify both volatilities and correlations
in a Brownian model, without restricting any of these quanti-
ties: the assumptions on v�(·, ·) simultaneously determine both
of them. Consider, for example, a market where the volatili-
ties of two assets, say assets a and b, are v(yt, a) = [v1a 0d−1]
and v(yt, b) = [v1b v2b 0d−2], for three constants v1a, v1b and
v2b, and where 0l is a l-dimensional vector of zeros. The cor-
relation between these assets returns and the squared volatility
of asset b are

corr(dR̃t (a) , dR̃t (b)) = v1b√
v2

1b + v2
2b

and

vol2(dR̃t (b)) = (
v2

1b + v2
2b

)
dt.

That is, asset returns volatilities determine asset returns cor-
relations. By contrast, a string model always makes volatility
and correlation two separate objects: see equations (2) and (3).

To illustrate a more complex case, assume that correla-
tions are random but volatilities are constant, as with the
string models that we focus on empirically (see Section 4).
Equation (4) is consistent with these assumptions when (i) at
least one element of v(yt, i) is random and (ii) ‖v(yt, k)‖2 =∑d

�=1 v2
�(yt, k) is constant for all k. Conditions (i)-(ii) are very

difficult to satisfy, but may hold very simply with equation (1),
as σ(y, i) and ρ(y, i, j) may potentially be driven by different
sets of state variables.

Finally, and returning to the description of our string model,
one may formulate several assumptions regarding the state
vector y. For example, y is another string in one extension of
our model developed in Appendix A.3. In our empirical work,
we shall assume it is a diffusion process, solution to

dyt = b (yt) dt + � (yt) dWt,

for some vector and diffusion matrix b and �. The role of
yt in this paper is to generate time-variation in assets’ return
correlations–not in asset returns, which are driven by strings.
In other words, we are considering a string model for the first
moments of asset returns, with (for simplicity) a more stan-
dard formulation regarding higher moments. We shall rely on

this state vector mostly to model the joint behavior of asset
correlations. We now provide a description of a pricing kernel
that enables one to derive cross-sectional restrictions on each
asset expected return.

2.2. The pricing kernel

In the absence of arbitrage, there exists a pricing kernel ξt that
prices all the assets. We assume that it is solution to

dξt

ξt
= −r (yt) dt −

∫ 1

0
φ (yt, i) dZt (i) di − λ (yt) dWt, (5)

where r is the instantaneous interest rate, λ is a vector val-
ued function, including the unit prices of risk related to the
fluctuations of the Brownian motion Wt, and φ(y, i)i∈(0,1) is
the collection of the unit prices of risk related to the fluctua-
tions of the string Zt(i)i∈(0,1). We assume that these prices of
risk are continuous functions of the state vector y and i. From
now on, we focus on the asset pricing implications of the pure
string component and, accordingly, we shall refer the collec-
tion φ(y, i)i∈(0,1) as the string premium. Appendix 2 contains
extensions that allow for the existence of a priced Brownian
risk. We now turn to the cross-sectional restrictions on each
asset expected return.

2.3. Conditional CAPM and the correlation premium

In a frictionless market, the expected return on each asset-i
satisfies the following standard restriction

E (yt, i) dt = E

(
dPt (i) + Dt (i) dt

Pt (i)

)

= r (yt) dt − cov

(
dPt (i)

Pt (i)
,

dξt

ξt

)
, i ∈ (0, 1) .

(6)

We have

cov

(
dPt (i)

Pt (i)
,

dξt

ξt

)

= −E

(
σ (yt, i) dZt (i)

∫ 1

0
φ (yt, j) dZt (j) dj

)

= −σ (yt, i)
∫ 1

0
φ (yt, j) E (dZt (i) dZt (j)) dj

= −σ (yt, i)

(∫ 1

0
φ (yt, j) ρ (yt, i, j) dj

)
dt. (7)

Replacing these results into equation (6) leaves the following
restrictions on the cross-section of expected returns:

Proposition 2.1 (Correlation premium) The expected return
E(yt, i) on asset-i, i ∈ (0, 1), satisfies

E (yt, i) − r (yt) = C (yt, i) , (8)

where

C (yt, i) ≡ σ (yt, i)
∫ 1

0
φ (yt, j) ρ (yt, i, j) dj. (9)
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Table 1. This table provides a heuristic construction of the expected return required to
hold any asset i. The second column indicates how asset-i is exposed to fluctuations of any
asset j. The second column is the unit risk premium required to bear a given exposure to any
asset j, φj ≡ φ(yt, j). The correlation premium, C, is the average of the exposures weighted

by the unit risk premia.

Exposure to asset-j Compensation Premium

j = 1 σ(yt, i)ρ(yt, i, 1) φ1 σ(yt, i)ρ(yt, i, 1)φ1
··· ··· ··· ···
j = J σ(yt, i)ρ(yt, i, J) φJ σ(yt, i)ρ(yt, i, J)φJ

C = σ(yt, i) 1
J

∑J
j=1 ρ(yt, i, j)φj

The term C(yt, i) in this proposition summarizes the eval-
uation of the asset-i granular exposure to the market, and
we are referring to it as the correlation premium for asset-i.
The proposition provides a novel theory of the cross-section
of the expected returns, based on this correlation premium.
Equation (8) tells us that each asset expected excess return
i is the premium required to compensate an investor for the
exposure of the asset-i return to all remaining asset returns.
The contribution of asset-j return to the premium for asset-i,
when the state is y, is σ(y, i)φ(y, j)ρ(y, i, j)dj. That is, ρ(·, i, j)
is the correlation between asset-i and asset-j returns, correla-
tion arising from the realization of the string; φ(·, j) is the unit
risk premium that compensates for any risk correlated with
the asset-j return; finally, σ(·, i) defines the size of the overall
exposure of the asset-i return to the whole string, as explained
in Section 2.1.

To illustrate Proposition 2.1, consider the following heuris-
tic example based on a J-asset market, as summarized by
table 1. Consider, say, asset-i. Its returns are exposed to the
risk of co-movements with returns on asset-1, a risk summa-
rized by the correlation, ρ(yt, i, 1); then, σ(yt, i)ρ(yt, i, 1) is
the risk of co-variation that returns on asset-i have with returns
on asset-1. We term this co-variation ‘exposure’, in analogy
with standard asset pricing terminology. Now, there are obvi-
ously J such exposures resulting from the realization of the
string, including the variation of the very same asset-i returns.
According to the model, each of these exposures receives a
compensation. The correlation premium is the average pre-
mium, C, as summarized by table 1, i.e. the counterpart to
equation (9) in this heuristic example.

This example illustrates that, in the model, exposures are
the counterparts to the familiar ‘betas’ in standard factor mod-
els. That is, betas are asset returns sensitivities to changes
in common factors; instead, in our model, exposures result
from the asset returns sensitivities to changes in all the asset
returns that arise through the realization of the string. Sim-
ilarly, compensations are the counterparts to ‘lambdas’. But
while lambdas are unit risk premia relating to the fluctua-
tions of common and exogenous factors, compensations are,
in our model, unit premia rewarding an investor for how
each asset return co-varies with all remaining asset returns:
there exists, then, a compensation for the exposure to each
asset return in the assets universe. In Section 3, we formu-
late assumptions that help deal with these infinite dimensional
problems, rendering our model tractable for empirical pur-
poses. Prior to this formulation, we highlight some proper-
ties of the model that help distinguish it from the standard
CAPM.

2.4. Relations with the standard CAPM

In the standard CAPM, the expected excess returns on each
asset link to the market portfolio and, hence, to all assets’
expected returns. What makes our model different? Hetero-
geneity: the property that the realized returns on each asset
(to which any asset returns may be exposed to) are risks that
require ‘their own’ compensation. In our model, then, the pre-
mium for investing in any risky asset compensates for the
granular exposure of this asset returns to shocks in all other
asset returns, as equations (8)-(9) predict. By contrast, the
standard CAPM predicts that the cross-section of risk-premia
reflects exposures to a common factor (the market portfolio),
such that each of the assets in the market portfolio requires
the same compensation for risk, mechanically adjusted for its
market cap.

To highlight these differences, we analyze the cross-
sectional difference of the expected returns by focusing on
two arbitrary assets. For simplicity, we consider the simple
case in which correlations, volatilities and unit string-premia
are constant. Note that the standard CAPM predicts that, for
any asset-i,

	(i) ≡ E (i) − r = cov (i, M )

σ 2
M

(EM − r) ,

where cov(i, j) denotes the covariance between two portfolio
returns, i and j, ω(i) is market cap of asset-i and, finally, EM ≡∫ 1

0 ω(i)E(i) di, and σ 2
M ≡ ∫∫

i,j∈[0,1]2 ω(i)σ (i)ρ(i, j)ω(j)σ (j)
di dj. In order to focus on our theme in this paper–
correlations–assume, next, that volatilities are constant in the
cross-section, σ(i) = σ (say). Then, the difference in premia
for any two assets, a, b ∈ (0, 1), is

	(a) − 	(b) = σ

∫ 1

0
ω (j) · λ (corr (a, j) − corr (b, j)) dj,

where λ = (EM − r)/σM is the standard unit risk premium,
the Sharpe ratio. That is, the difference in premia is a weighted
sum of the difference in correlations of the two assets’ returns
with respect to all remaining assets’ returns. But crucially,
in this model, each of the assets’ returns receives the same
compensation, λ.

Our string model works differently. By equations (8)–(9),
the differences in premia required to invest in a and b are

C (a) − C (b) = σ

∫ 1

0
φ (j) (corr (a, j) − corr (b, j)) dj.
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For the string, the difference in correlations with asset-j is
weighted by φ(j), which varies over j ∈ (0, 1): the returns
of each security contribute to the overall risk of any asset
and requires ‘its own’ compensation, which is proportional
to φ(j)corr(·, j), as explained in table 1. In other words, in the
string model, there is a risk-premium related to each security
j; in the standard CAPM, there is a unique premium, λ, for all
securities.

Now, analytically, and under all the assumption in this
section, the string model collapses to the CAPM under the
razor’s edge condition by which φ(j) = λ · ω(j), for all i.
However, this condition bears little economic meaning: the
terms φ(j) are string-premia (that is, compensations for risk),
whereas, ω(i) are, more mechanically, cap weights. The next
section explains that, in Appendix 2, we have developed a
consumption-based string model where the string-premium
relating to any asset-j may be increasing in the dividend share
of this asset. While dividend shares could be a possible proxy
for firm size, they are however quite distinct from market
caps. Even more crucially, the condition that high string-
premia increase with firm size is strongly rejected by data (see
Section 4) as our empirical analysis suggests a quite com-
plicated structure for these string-premia. In Section 3, we
proceed with the formulation of additional modeling details
of the string-premia in the general random environment,
φ(yt, i), which we rely on while estimating our cross-sectional
restrictions.

2.5. Consumption-based correlation risk

What would a consumption-based model predict regarding
the correlation premium? In Appendix 2, we study Euler’s
conditions in a string economy and identify the correlation
premium that results in this economy. This premium is pro-
portional to a weighted average of all the assets’ dividend
volatilities (weighted by the asset dividends’ shares), where
the proportionality factor is the CRRA (see equation (A15)).
One additional property of this economy is that the returns
on each asset depend on the asset specific shock (as in
equation (1)) but also, indirectly, on the realization of the
whole string (see equation (A16)). This property arises due
to market clearing, as equilibrium asset prices do in general
depend on the realization of the whole share process, a com-
plication well-known since previous work on consumption-
based multi-asset models (see, e.g. Menzly et al. 2004). This
property justifies an extension of the model in this section,
whereby any asset-i returns are driven by a ‘compound string’,
that is, by the realization of a convex functional of the whole
string (i.e. not only by dZt(i)). The reader will find details
regarding formulation, solution and economic interpretation
of the compound string model in Appendix 2. We now for-
mulate additional assumptions regarding the main model we
focus in this paper–the Conditional CAPM string model of
this section–with the purpose of taking it to data.

3. A model with random correlations

This section provides model specifications that account for
the salient empirical properties of (i) asset return correlations

and (ii) the premia required to bear time-variation in these
correlations.

It is well-known that asset correlations do indeed vary over
time (see, e.g. Figure 1). Initially, however, it is instructive
to focus on our model implications in the simple case where
correlations, variances and premia are all constant. Assume,
then, that for all i, j ∈ (0, 1),

σ (yt, i) = σi, ρ (yt, i, j) = ρ (i, j) , φ (yt, j) = φo,

λ (yt) = λo,

for some constants σi, ρ(i, j), φo and a vector of constants
λo. Given these assumptions, Proposition 2.1 predicts that the
expected excess returns on each asset-i are

E (yt, i) − r (yt) = C (i) ,

C (i) = φoσi

(∫ 1

0
ρ (i, j) dj

)
︸ ︷︷ ︸ .

≡ρi(global correlation exposure)

(10)

We call ρi global correlation exposure (GCE) for asset-i, con-
sistent with terminology in Section 2.3 (see table 1): the risk
premium on asset-i equals the product of a risk exposure, σiρi,
times the unit price of string-risk, φo. We refer to ρi as ‘global’
because it is the average correlation of asset-i returns with
all other asset returns. This decomposition of the expected
returns is neat, but obtains due to the assumption that the unit
prices of risk are constant in the cross-section. We now gener-
alize the insights from this basic model and account for both
time-variation in correlations and cross-sectional variations in
the unit risk premia.

3.1. A factor model of asset correlations

Figure 1 summarizes well-known evidence regarding time-
variation in asset correlations. We consider 25 Size and
Book-to-Market sorted portfolios and calculate realized cor-
relations for each portfolio pair through one-month rolling
windows estimates. Consider the empirical counterpart to
the global correlation exposures ρi in equation (10), ρ$

t (i) =
1
n

∑n
j=1ρ

$
t (i, j), where ρ$

t (i, j) denotes the realized correla-
tion between portfolios j and i, and n = 25. We find that
nearly 90% of the variability in these correlation exposures is
explained by the first principal component. Figure 1 plots the
average correlation exposure, defined as ρ$

t = 1
n

∑n
i=1 ρ$

t (i).
Section 4.2 provides a detailed description of the historical
episodes leading to the main spikes experienced by additional
measures of correlation exposures (see figure 5 and table 3).

The fact that a large portion of the correlation exposures is
driven by a single principal component suggests that a par-
simonious model may help explain time-variation in these
correlations. We now proceed with such a model while still
assuming that correlation is priced in accordance with the
string model of Section 2. We assume that the asset corre-
lations are driven by a diffusion process yt ≡ yt, a scalar. To
keep the model as simple as possible, we still assume that
the exposures to strings are constant and independent of i,
i.e. σ(yt, i) = σi; and we assume that the string correlation
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Figure 1. This picture depicts the average correlation exposure for 25 Size and Book-to-Market sorted portfolios, defined as
ρ$

t = 1
n

∑n
i=1

∑n
j=1 ρ$

t (i, j), where ρ$
t (i, j) is the realized correlation between portfolios j and i, obtained through a rolling window equal

to 22 days.

Figure 2. This figure plots three-month moving averages of the estimates of yt, the state variable driving market correlations (red line),
along with the University of Michigan Consumer Sentiment (UMCSENT) index (blue line). Both variables are de-meaned and standardized
by their own standard deviations. The yellow shaded areas cover recession episodes as determined by the National Bureau of Economic
Research.

function is

ρ (yt; i, j) = �0 (i, j) + �1 (i, j) e−yt , (11)

where �0(i, j) and �1(i, j) are matrix coefficients independent
of time, and such that �0(i, i) = 1 and �1(i, i) = 0, and yt is
solution to a square root process

dyt = κ (m − yt) dt + η
√

yt dWt, (12)

for three positive constants κ , m and η. Under standard
parameter restrictions, yt stays strictly positive, hence, this
specification for yt bounds ρ(yt, i, j) to be inside the unit circle
as soon as |�0(i, j) + �1(i, j)| < 1.

Note that a string model for pairwise correlations may well
be an alternative to the modeling assumptions underlying
equations (11) and (12). However, we adopt the assumptions
of this section because our main focus is on the cross-section
of expected returns and last, but not least, for the sake of
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simplicity. The formulation in (11) is both analytically con-
venient and intuitive: correlations are made up of a constant
and a dynamic component, with sensitivities to changes in yt,
�1(i, j), which vary across all asset pairs. For the purpose of
identifying the model, we need to fix the sign of �1(i, j), and
we work with �1(i, j) ≥ 0. We shall, then, refer yt to as a pro-
cyclical variable: correlations are down when yt is up. Note,
however, that correlations are not always linked to the busi-
ness cycle. There might be correlation spikes during periods
of financial distress, but such episodes may well be transitory
and occurring during a favorable phase of the business cycle,
as in the instances identified and discussed in Section 4 (see
Figure 5).

In other words, our model merely defines bad times as times
of high correlations. Is there a more precise interpretation of
our unobserved factor? Figure 2 plots monthly estimates of
yt obtained in Section 4 against the University of Michigan
Consumer Sentiment (UMCSENT) index; both series are de-
meaned and standardized by their own standard deviation.
This index is known to track reasonably well the long swings
in consumers’ ‘sentiment’ around business cycle fluctuations.
Our extracted variable correlates with this index at approx-
imately 60%. In previous work, Corradi et al. (2013) have
noticed that long-run movements in stock market fluctuations
link to this index. It is remarkable that market correlations
(Wall Street) and consumer sentiment (Main Street) are also
statistically quite closely related.

3.2. The correlation premium

The next corollary summarizes cross-section restrictions
resulting from the assumptions formulated in Section 3.1.

Corollary 3.1 (One-factor correlation premia) Assume that
the correlation function satisfies equation (11), where yt is
solution to equation (12), and that each asset return variance
is constant and equal to σ 2

i for asset-i. Then, the expected
excess returns in Proposition 2.1 (equations (8)-(9)) are

E (yt, i) − r (yt) = C (yt, i) ,

C (yt, i) = σi

∫ 1

0
φ (yt, j)

(
�0 (i, j) + �1 (i, j) e−yt

)
dj. (13)

Thus, the cross-section of the expected excess returns is
driven by a single, pro-cyclical state variable, yt. Moreover,
under conditions on φ(yt, j) discussed in a moment, expected
excess returns are decreasing and convex in yt, that is, they are
countercyclical and react asymmetrically to yt: they increase
in bad times more than they lower in good. This property is
known to hold, empirically, at the aggregate level, and at a
business cycle frequency (see Mele 2007). However, a sim-
ilar property may not necessarily hold for the model in this
paper because correlations may well spike in good times, as
discussed in the previous section.

Furthermore, some assets may display a few desirable prop-
erties due to their ability of being more resilient to systemic
shocks: while a very few assets may occasionally withstand
to a widespread turmoil where there is ‘no place to hide’ (see,
e.g. Buraschi et al. (2014)), some assets’ performance, a sub-
set J say, may still suffer relatively much less than others’ in

bad times. This property makes these assets natural ‘hedges’:
now, asset returns that have more exposure to those in J may
require a lower premium. In Section 4, we provide evidence
that big stocks display such hedging property, and that some
portfolio returns particularly exposed to them may, then, be
even pro-cyclical, under conditions (see Section 4.3).

We now proceed with specifying three functional forms for
the string premia that we use in our empirical work.

(I) Constant premia. The correlation premium is constant
both in time and in the cross-section, that is, φ(yt, j) ≡ φ̄. In
this case, the correlation premium in equation (13) collapses
to

C (yt, i) = φ̄σi
(
�0 (i) + �1 (i) e−yt

)︸ ︷︷ ︸
≡ρi(yt) (dynamic GCE)

, (14)

where �q(i) = ∫ 1
0 �q(i, j)dj, q = 0, 1. This model specification

is a very minimal generalization of the constant correlation
model in equation (10), whereby the global correlation expo-
sure (GCE), ρi, is replaced with its dynamic counterpart,
ρi(yt). Still, the properties of ρi(yt) play an important role in
the interpretation of our empirical results (see Section 4.3).

(II) Cross-sectional variation. The correlation premium for
shocks on the asset return-j links to the dynamic GCE in (14)
for the same asset, ρj(yt), according to φ(yt, j) = φ0�0(j) +
φ1�1(j), for two constants φ0 and φ1. The correlation premium
for asset-i in Corollary 3.1 is

C (yt, i)

= σi

∫ 1

0
(φ0�0 (j) + φ1�1 (j))

(
�0 (i, j) + �1 (i, j) e−yt

)
dj.

(15)

(III) Time series and cross-sectional variation. The correla-
tion premium for shocks on asset-j links to ρj(yt, i), according
to φ(yt, j) = φv0�0(j) + (φv1 + φv2e−yt)�1(j), for three con-
stants φv0, φv1 and φv2, such that the correlation premium for
asset-i is

C (yt, i) = σi

∫ 1

0

(
φv0�0 (j) + (

φv1 + φv2e−yt
)
�1 (j)

)
(
�0 (i, j) + �1 (i, j) e−yt

)
dj. (16)

The rationale behind the specifications in (II) and (III) is
the following. A parsimonious modeling assumption is that
the premium φj(yt, j) for exposure to asset returns-j reflects
information on the dynamic GCE for the very same asset,
ρj(yt). In these formulations, then, this premium reflects both
the unconditional part of ρj(yt), i.e. �0(j), and the exposure
of ρj(yt) to movements in the state variable yt, �1(j). The
difference between (II) and (III) is that the latter reflects
both cross-sectional information (i.e. on �0(j) and �1(j)) and
time series information (i.e. on the state of yt). Note that the
specification (III) encompasses (II), namely for φv2 = 0.

The following proposition gathers the expressions for the
cross-section of the unconditional expected returns in the
three specifications formulated above.

Proposition 3.2 (Unconditional correlation premia) The
unconditional expected returns predicted by (I) the constant
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premia model, (II) the cross-sectional variation model, and
(III) the time series and cross-sectional variation model, are

E [C (yt, i)] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ̄σi
(
�0 (i) + �1 (i) Ȳ(1)

)
(I)

σi

∫ 1

0
(φ0�0 (j) + φ1�1 (j))(

�0 (i, j) + �1 (i, j) Ȳ(1)

)
dj (II)

σi

∫ 1

0
[φv0b0 (i, j) + φv1b1 (i, j)

+φv2b2 (i, j)] dj (III)

(17)

where b0(i, j) ≡ A0,0(i, j) + A0,1(i, j)Ȳ(1), b1(i, j) ≡ A1,0(i, j) +
A1,1(i, j)Ȳ(1), b2(i, j) ≡ A1,0(i, j)Ȳ(1) + A1,1(i, j)Ȳ(2), Ah,q(i, j) ≡
�h(j)�q(i, j), and

Ȳ(�) ≡ E
(
e−�yt

) =
(

2κ

2κ + �η2

) 2κm
η2

, � = 1, 2.

In Section 4, we estimate our string model while relying on
its unconditional version predicted by Proposition 3.2, simi-
larly as with standard methodology used with the Conditional
CAPM (e.g. Jagannathan and Wang 1996, Lettau and Ludvig-
son 2001. We now develop additional cross-equation restric-
tions that we use while estimating the model. We address the
question: is yt a source of priced risk?

3.3. The premium for correlation risk

A key concept that has been extensively investigated in
the empirical literature is the premium for correlation risk,
defined as the difference between the expected integrated
correlation under the risk-neutral probability and the physi-
cal probability, denoted hereafter as Q and P, respectively.

If correlation was not a priced risk, this difference would
always be zero. Figure 3 depicts the realized premium for
correlation risk for S&P 500 stocks, defined as the difference
between option implied integrated correlations (that is, cor-
relations expected under Q) and realized correlations (prox-
ies for expectations under P). Section 4 contains a detailed
description of our input data and computations used in
figure 3.

Consistent with the empirical evidence, we assume that
time-variation in correlations is a priced risk. Our point
of departure is the string correlation function ρ(yt; i, j) in
equation (11). Let us integrate this function twice with respect
to all asset pairs, obtaining the average correlation amongst
all asset returns,

ρ(yt; �) =
∫∫

i,j∈[0,1]2
ρ (yt; i, j) di dj = �0 + �1e−yt , (18)

where we have defined � = [�0, �1] and �q = ∫ 1
0 �q(i) di,

q = 0, 1. The model-implied premium for correlation risk
is defined as the difference between the average expected
integrated correlation ρ(yt; �) in (18) under Q and that
under P

Pt ≡ 1

T − t

[∫ T

t
EQ

t (ρ (yτ ; �)) dτ − Et (ρ (yτ ; �)) dτ

]
,

(19)
where EQ

t (·) denotes the expectation under Q given informa-
tion at time-t, and T − t is a given time horizon.

In words, the premium for correlation risk compensates
an investor for the fluctuations in the asset correlations.
Note, also, that this definition is distinct from the correla-
tion premium, i.e. C(·, i) in Proposition 2.1, as emphasized

Figure 3. This picture plots the realized premium for correlation risk for S&P 500 stocks, defined as the difference between (i) risk-ad-
justed expectations of one-month average correlations, and implied by option prices, and (ii) realized correlations, calculated throughout a
one-month window.
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in the Introduction (see footnote 3). The correlation pre-
mium, C(·, i), compensates for any asset return exposure to all
remaining asset returns. The premium for correlation risk, Pt,
compensates for randomness in this exposure. Furthermore,
note that yt, the factor driving this random exposure, is not
priced in the cross-section of the expected returns. Appendix
B indicates how to proceed under the assumption that yt is also
priced in the cross-section of the expected returns. However,
to keep the model as simple as possible, we do not consider
this extension.

To render equation (19) operational, we specify the unit
risk premium for yt. We assume that λ(y) = ν

√
y for some

constant ν, such that, under the risk neutral probability, Q,

dyt = κ̃ (m̃ − yt) dt + η
√

yt dW̃t, (20)

where W̃t is a standard Brownian motion under Q, and

κ̃ = κ + νη, m̃ = κm

κ + νη
.

Because yt is interpreted as a pro-cyclical variable, we expect,
and find, empirically (see Section 4.2), that ν > 0, meaning
that yt is more frequently in bad times under Q than under P
(see Proposition A.1 in Appendix 1).

Let ϑ = [θ , �1, ν], where θ = [κ , m, η] denotes the parame-
ter vector under the physical probability. Accordingly, denote
with Pt = P(yt; ϑ) the model-based premium for correlation
risk in equation (19) for a given set of parameter values ϑ . The
next proposition, proved in Appendix 1, provides motivation
for this notation as well as some properties of this premium
for correlation risk.

Proposition 3.3 (Premium for correlation risk) Assume that
the premium related to Brownian fluctuations is λ(y) = ν

√
y.

Then, the premium for correlation risk is

P (yt; ϑ)

= �1

T − t

∫ T

t
(u (yt, τ − t; θ , ν) − u (yt, τ − t; θ , 0)) dτ ,

(21)

where

u (y, x; θ , ν) = a (x; ν) e−b(x;ν)y,

a (x; ν) =
(

2κ̃

2κ̃ + η2
(
1 − e−κ̃x

)
) 2κm

η2

,

b (x; ν) = 2κ̃e−κ̃x

2κ̃ + η2
(
1 − e−κ̃x

) . (22)

Moreover, for ν > 0, the premium for correlation risk is (i)
strictly positive; and is (ii) increasing and concave in yt for
all yt lower than some y1; and (iii) decreasing and convex in
yt for all yt higher than some y2 > y1.

Proposition 3.3 tells us that, provided correlation risk is
positively priced, ν > 0, the premium for this risk achieves
a maximum. In good times, when the pro-cyclical variable
yt is high, the premium for correlation risk rises as yt low-
ers. As times deteriorate further, additional drops in yt lead to
a fall in this premium. This fall reflects that fact that, in bad
times, correlations under P and under Q are already very high;
because they are obviously both bounded, then, as yt lowers,
their difference tends to vanish. These properties are illus-
trated by the left panel in figure 4, which plots the premium

Figure 4. This picture plots the one-month premium for correlation risk P(yt; ϑ) in equation (21) against the state variable yt (left panel)
and the average correlation predicted by the model, ρ(yt; �) in equation (18) (right panel). Parameter values are set equal to their estimates
obtained in Section 4 (see table 2). The red line is the unconditional expected value of the premium for correlation risk predicted by the
model, i.e. E(P(yt; ϑ)) in equation (26).
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for correlation risk P(yt; ϑ) in equation (21), and its uncondi-
tional expectation, based on the parameter estimates obtained
in Section 4.

The right panel of figure 4 depicts the premium for cor-
relation risk against the average correlation predicted by the
model estimates, ρ(yt; �) in equation (18), obtained while
varying the state variable yt driving them. The descending part
of the curve in this right panel does correspond to the ascend-
ing part of the curve in the left panel. The model prediction,
then, is that for most values of the instantaneous correla-
tion, correlations and the premium for correlation risk are
inversely related, with the premium achieving its maximum
when correlation is about as low as 25%.† These predictions
are useful because, while yt is not observed, we may esti-
mate correlations and the premium for correlation risk based
on observable quantities. Section 4 provides additional details
on the testable implications of the model in this dimension,
and evidence of a strong negative relation between correla-
tions and the premium for correlation risk, consistent with the
model predictions (see figure 12 in Section 4.4).

4. Empirical analysis

4.1. Data and preparation of variables

4.1.1. Sources. For the model calibration, we require data on
a wide panel of individual stocks belonging to a large index
with traded options, and also data on a smaller panel of real-
ized returns for a set of test assets. The first large panel is used
to estimate the correlation state variable, and the smaller pan-
els are then used to test our cross-sectional predictions. We
rely on a daily data sample that runs from January 1996 until
April 2016. For the smaller panels, we use returns on stan-
dard Fama-French portfolios. We calculate second moments
(volatilities, correlations, and factor betas) based on daily
returns, and then proceed to estimate risk premia relying on
monthly portfolios returns.

As a broad sample of individual stocks, we select all
constituents of a market-wide index, namely, S&P500. The
composition of S&P500 index is obtained from Compustat
and merged with CRSP through the CCM Linking Table using
GVKEY and IID to link to PERMNO, following the second
best method from Dobelman et al. (2014). The data on daily
returns and market capitalization are obtained from CRSP, and
as a proxy for index weights on each day, we use the relative
market cap of each stock in an index from the previous day.

For the cross-sectional tests, we use a number of standard
portfolios, sorted by characteristics such as market equity
(ME), book-to-market (BTM), investment (INV), operating
profitability (OP), momentum (MOM), and reversal (REV).
We obtain daily and monthly returns for these portfolios
from Kenneth French data library. The cross-sectional pric-
ing results are based on six sets of portfolios, each with 25
assets stemming from different two-way sorting procedures.

† One instance of such an inverse relation is documented by Mueller
et al. (2017) in the foreign exchange market.

We use the following data sets: 5 × 5 ME-BTM, 5 × 5 ME-
INV, 5 × 5 ME-MOM, 5 × 5 ME-REV, 5 × 5 ME-OP, and
5 × 5 ME-BTM Global portfolios.

We would like our model to deliver not only cross-sectional
pricing performance, but also to be consistent with the pre-
mium for correlation risk. To help achieve the second task,
we rely on option data on the S&P500 index and all its
constituents and compute the time series of the implied cor-
relations and the premia for correlation risk, defined below.
Implied correlations are estimated by comparing the index
variance with the variance of the portfolio of index compo-
nents. To compute the option-based variables, we rely on the
Surface File from OptionMetrics, selecting for each underly-
ing the options with 30, 91 and 365 days to maturity and deltas
in the out-the-money range (that is, absolute delta weakly less
than 0.5). While the surface data is not suitable for testing
trading rules due to extensive inter- and extrapolations of mar-
ket data, it proves to be a valuable source of information that
can be used in asset pricing tests or in generating signals for
trading.

4.1.2. Model inputs. The estimation of our model requires
calibrating the string correlation function in (11) to its empir-
ical counterparts. We calibrate the model in a way that the
correlation state variable yt reproduces model dynamics for
the average correlation in (18) and its risk-neutral equiva-
lent (defined in a moment) that match as closely as possible
their empirical counterparts. As for these empirical counter-
parts, we rely on average correlations obtained through the
equicorrelation amongst all S&P500 components. Equicorre-
lation is a useful measure of the average level of market-wide
correlations and, hence, it may reasonably be based upon for
the purpose of proxying the dynamics of our state-variable.
Equicorrelations are computed assuming that, in each day, all
pairwise correlations are equal.‡

Consider a basket of assets with a variance equal to σ 2
It at

time-t:

σ 2
It =

∑
i,j=1

wiwjσitσjtρij,t,

where wi are the asset portfolio weights. Given a time-series
of variances of this basket, σ 2

It , of its components σ 2
it , and the

index weights, wi, equicorrelations are obtained as the single
number ρij,t = ρt calculated in each day t as

ρt = σ 2
It − ∑

i=1w2
i σ

2
it∑

i=1

∑
j �=iwiwjσitσjt

. (23)

Note that the resulting correlation matrix of the assets in
the basket is positive-definite, provided the equicorrelation is
non-negative, which is the case in our empirical implementa-
tion of (23). In the sequel, we refer to ‘implied correlation’
for the risk-neutral, and ‘realized correlation’ for the realized
equicorrelations.

‡ Elton and Gruber (1973) are amongst the first to suggest this notion
of correlation under the physical probability. Driessen et al. (2005)
and Skinzi and Refenes (2005) extended this notion to the risk-
neutral space to measure an average option-implied correlation
representative of a universe of stocks.
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Option-implied variances are computed as model-free
implied variances (Dumas 1995, Britten-Jones and Neu-
berger 2000, Bakshi et al. 2003). We compute realized vari-
ances using daily returns and a window length equal to one
month. Thus, after plugging the implied or realized variances
into equation (23), we end up with the monthly implied or
realized correlations, respectively. The premium for correla-
tion risk is calculated as in Driessen et al. (2005) as an implied
correlation at the end of day-t minus 22-day moving averages
of the realized correlations under P calculated through (23).
We denote the estimate of this premium at time-t with P$

t .
Likewise, let ρ$

t denote the realized correlation at time-t. As
primary data series for calibrating the parameters governing
the dynamics of yt, we use one-month realized correlation,
ρ$

t , and such is, then, the time horizon of the correspond-
ing premium for correlation risk, P$

t . To calibrate the string
correlation function (i.e. �0(i, j) and �1(i, j) in (11)), we cal-
culate equation (23) using realized standard deviations on
each single asset. Pairwise correlations are computed from
daily returns by relying on standard formulas. Finally, the
cross-sectional tests of our models are based on monthly real-
ized excess returns of test portfolios. The excess returns are
computed as realized monthly returns minus the one-month
Treasury bill rate (from Ibbotson Associates) obtained from
the Kenneth French data library.

4.2. Cross-equation restrictions and state variable
estimates

We develop moment conditions that we use to estimate θ , the
parameter vector related to the dynamics of the pro-cyclical
state variable yt under P (see Section 3), the correlation expo-
sures �0(i, j) and �1(i, j), and the coefficient ν of the premium
for correlation risk. Finally, we explain how we proceed to
recover estimates of the pro-cyclical state variable for each
date in our sample.

4.2.1. Matching correlations and the premium for corre-
lation risk. The next proposition provides moment condi-
tions that we use to estimate (θ , �1).

Proposition 4.1 (Correlation moment conditions) For any
integer n, the n-th uncentered unconditional moment of
ρ(yt; �) is

E (ρn(yt; �)) =
n∑

i=0

(
n

i

)
�i

0�
n−i
1

(
2κ

2κ + (n − i) η2

) 2κm
η2

.

(24)
For any fixed �, the unconditional covariance of ρ(yt; �) with
ρ(yt+�; �) is

cov (ρ(yt; �), ρ(yt+�; �))

= �2
1

⎡
⎣(

4κ2(
2κ + η2

)2 − η4e−κ�

) 2κm
η2

−
(

4κ2(
2κ + η2

)2

) 2κm
η2

⎤
⎦ .

(25)

Provided the state variable yt is mean-reverting (κ > 0),
the auto-covariance of the integrated correlation, ρ(yt; �), is
strictly positive and vanishes to zero, eventually. The higher κ ,

the higher the vanishing rate, just as for the original state vari-
able yt. Note, also, that m, the unconditional mean of yt, can
be identified with enough moment conditions. Intuitively, the
variance of a square root process is level-dependent, such that
the whole autocovariance function of yt is level-dependent
too.

Proposition 4.1 helps reconstructing the dynamics of yt

under the physical probability. Moreover, we may rely on the
model-implied premium for correlation risk in Proposition 3.3
and derive additional parameter restrictions. In Appendix 1,
we show that the unconditional mean of P(yt; ϑ) is

E (P (yt; ϑ)) = �1

T − t

∫ T−t

0
(ū (x; θ , ν) − ū (x; θ , 0)) dx,

(26)
where

ū (x; θ , ν) =
(

2κ̃κ

2κ̃κ + (
κ + νηe−κ̃x

)
η2

) 2κm
η2

.

We use a moment condition based on equation (26) as an addi-
tional cross-equation restriction for [θ , �1]. Note that we do
not need this restriction in order to estimate the cross-section
of expected returns. However, it helps pinning down the level
of the premium for correlation risk to its historical average,
through the parameter ν. (The horizontal, red lines in figure 4
are the values of E(P(yt; ϑ)) implied by our parameter esti-
mates.) Precisely, let ζ = [θ , ν, �0, �1] and let N denote the
sample size. Define

hN (ζ ) ≡

⎡
⎢⎢⎢⎢⎢⎢⎣

EN (ρ$
t ) − E (ρ(yt; �))

varN (ρ$
t ) − var (ρ(yt; �))

EN (ρ$
t

3) − E
(
ρ3(yt; �)

)
{covN (ρ$

t , ρ$
t+�)

−cov (ρ(yt; �), ρ(yt+�; �))}�∈L

EN (P$
t ) − E (P (yt; ϑ))

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

where N subscripts indicate empirical moment estimates and,
finally, L denotes the set of lags chosen while calibrat-
ing the model-implied autocovariance function to its data
counterparts: two weeks, one month and two months. Our
GMM estimator is obtained as

ζ̂N = arg min
ζ

hN (ζ )ᵀWN hN (ζ ), (27)

where WN is a weighting matrix that minimizes the asymptotic
variance of the estimator, which we estimate, recursively, as
Ŵ−1

N ≡ hN (ζ̂N )ᵀhN (ζ̂N ).
Therefore, we rely on 7 moment conditions to estimate

6 parameters. Table 2 contains parameter estimates and

Table 2. GMM estimates of ζ̂N
in (27) and t-stats.

Estimate t-stat

�0 0.1779 7.23
ln �1 − 0.7460 − 3.71
κ 3.8753 3.81
m 2.2423 2.71
η 4.1688 2.87
ν 3.3518 15.97
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Figure 5. The top panel depicts estimates of the pro-cyclical state variable, yt, obtained by matching the model predictions on realized
correlations and the premium for correlation risk, as in equation (28). The bottom panel depicts the average correlation in the data (solid,
blue line) and the average correlation predicted by the model (dashed, red line). The numbered circles identify events described in table 3.

associated t-statistics. All parameter estimates are highly
statistically significant.

4.2.2. Estimates of correlation exposures. To implement
cross-sectional estimates of the model in (13), we need to esti-
mate the asset return correlation exposures in equation (11),
�0(i, j) and �1(i, j) and, thus, build up estimates of the state.
We rely on estimates of yt obtained while minimizing a dis-
tance of the model predictions to the data proxies ρ$

t and
P$

t ,

ŷt = arg min
yt

(
(ρ$

t − ρ(yt; �̂N ))2

var(ρ$
t )

+ (P$
t − P̄(ϑ̂N ))2

var(P$
t )

)
, (28)

where ρ(yt; �) is defined in (18) and P̄(ϑ̂N ) denotes the model
counterpart to P$

t .† Therefore, we are using option data for the
purpose of extracting information on the state variable that
drives the assets’ correlations. This objective is not strictly
needed while only focussing on the cross-section of expected
returns–we could have omitted the second term of the mini-
mand in (28). However, option data may provide additional

† Precisely, P̄(ϑ̂N ) is the one-month realized average of P(yt; ϑ̂N )

in (21) evaluated at the estimated parameter vector ϑ̂N .

and useful information for the purpose of estimating both
correlation premia and the cross-section of expected returns.

Estimates of the correlation exposures, say �̂0(i, j) and
�̂1(i, j) are, then, obtained while regressing data proxies,
ρ$

t (i, j) say, onto a constant and e−ŷt , under the restriction
that the coefficient estimates sum up to the GMM estimates
in (27), viz

�̂q =
∫∫

i,j∈[0,1]2
�̂q (i, j) di dj, q ∈ {0, 1} .

Finally, we use �̂0(i, j) and �̂1(i, j) in equation (13) and imple-
ment cross-sectional estimates of the prices of risk φ(·) while
fitting the unconditional version of the model predicted by
Proposition 3.2 in its three versions, as implied by (14), (15),
and (16). Section 4.3 discusses results on these estimates.

Figure 5 depicts the estimates of the state obtained
through (28) as well as a comparison of the average corre-
lations predicted by the model with those in the data. Model
predictions are obtained as 22-day rolling window averages
of ρ(ŷt; �̂N ), and average correlations in the data are obtained
in the same way from S&P 500 stocks. The model tracks
all the major episodes of spikes in correlations that occurred
during our sample period (defined as the nine episodes in
which model-based correlations reached their highest levels).



706 W. Distaso et al.

Table 3. This table provides descriptions of the major events
leading to the spikes in correlation depicted in Figure 5.

Event Date Description

1 Nov 1997 Asian crisis corrections
2 Sep 1998 Russian financial crisis
3 Sep 2002 Bear market corrections
4 Mar 2003 Iraq War
5 Sep 2007 Subprime crisis
6 Sep 2008 Lehman Brothers bankruptcy
7 Jun 2010 European debt crisis I: Greece bailout
8 Aug 2011 European debt crisis II: spreading
9 Aug 2015 Chinese market corrections

Table 3 provides a succinct description of the events leading
to these spikes.

We now turn to provide cross-sectional estimates of the
price of risk and discuss the model implications on the
cross-section of expected returns.

4.3. Cross-sectional pricing

We test the unconditional version of the asset pricing
model (13), implied by the three dynamic specifications
of the premium for correlation risk predicted by Proposi-
tion 3.2: (I) constant premium φ(yt, j) = φ̄ both in time and
cross-sections, (II) premium with cross-sectional variation
φ(yt, j) = φ0�0(j) + φ1�1(j), for two constants φ0 and φ1,
and (III) premium with time and cross-sectional variation
φ(yt, j) = φv0�0(j) + (φv1 + φv2e−yt)�1(j), for three constants
φv0, φv1 and φv2.

We employ a two-pass Fama-MacBeth (1973) procedure
to estimate the coefficients of the string premium φ(y, ·). We
estimate these coefficients by regressing the cross-section of
the test portfolio realized returns onto the cross-sectionally
exogenous variables appearing on the R.H.S. of equation (17)
(e.g. σi

∫ 1
0 bx(i, j) dj, for x = 0, 1, 2, for Model III). Note that

the three specifications are all linear in the premium coeffi-
cients, which facilitates calculations and statistical inference.
Specifically, for each portfolio i in a given set of test port-
folios, we compute the model-based expected return using as
inputs the estimate of the volatility parameter σi, the estimates
of the unconditional moments of the correlation level Ȳ(�),
� = 1, 2, and the estimates of the correlation exposures �0(i, j)
and �1(i, j). We gauge the overall model fit by comparing the
unconditional model-based average returns with the realized
returns for the whole sample period. Tables 4 to 6 provide
parameter estimates and adjusted-R2 for the three models on
six sets of test portfolios.

For comparison, table 7 provides adjusted-R2 for a num-
ber of unconditional linear factor models fitted to the same
portfolio returns of tables 4 through 6: the CAPM, and 3-
(Fama and French 1993), 4- (Carhart 1997) and 5- (Fama and
French 2015) factor models. As with our string models, these
measures of fit are obtained by fitting average excess returns
of the test assets through the average returns predicted by the
models. Our Models II and III seem to provide a quite reason-
able fit and, with the exception of one case (5 × 5 ME-INV),

Table 4. This table provides parameter estimates of φ̄
in the constant string premium Model I, φ(yt, j) = φ̄
(with t-stats below), and the pricing performance
expressed as the average pricing error (α is annualized)
across a given set of portfolios, and the fit of the model

(adjusted-R2, R̄2) from this regression.

φ̄ α R̄2

5 × 5 ME-BTM 0.315 0.078 −0.020
0.540 1.881 –

5 × 5 ME-INV 0.434 0.073 0.016
1.242 2.893 –

5 × 5 ME-MOM 0.136 0.099 −0.035
0.552 4.711 –

5 × 5 ME-REV 0.878 0.033 0.196
3.070 1.442 –

5 × 5 ME-OP − 0.002 0.101 −0.043
− 0.004 2.978 –

5 × 5 ME-BTM Global − 0.307 0.103 −0.033
− 0.448 2.267 –

Table 5. This table provides parameter estimates of φ0
and φ1 in the cross-sectional variation premium Model II,
φ(yt, j) = φ0�0(j) + φ1�1(j) (with t-stats below) and the pricing
performance expressed as the average pricing error (α is annu-
alized) across a given set of portfolios, and the fit of the model

(adjusted-R2, R̄2) from this regression.

φ0 φ1 α R̄2

5 × 5 ME-BTM 26.377 − 15.188 0.181 0.235
2.646 − 2.248 2.618 –

5 × 5 ME-INV 51.991 − 27.727 0.195 0.373
3.547 − 3.345 4.344 –

5 × 5 ME-MOM 34.776 − 17.782 0.145 0.736
11.921 − 11.604 12.728 –

5 × 5 ME-REV 34.718 − 16.770 0.102 0.502
4.434 − 4.156 5.608 –

5 × 5 ME-OP 86.275 − 45.169 0.233 0.795
10.309 − 10.121 11.117 –

5 × 5 ME-BTM Global 70.577 − 38.144 0.219 0.746
7.191 − 7.480 9.251 –

certainly better than the linear factor models. Consider the fol-
lowing heuristic calculations. If we average the R̄2 across all
portfolios in table 7, we obtain 0.222 (CAPM), 0.125 (3-F),
0.403 (4-F) and 0.397 (5-F). In comparison, the average R̄2 in
table 6 for the string Model III is 0.611, a performance much
better than that of the 4-F model. Appendix 3 contains results
regarding S&P 500 sectors and index-based portfolios, and
achieves to equally encouraging conclusions: on average, our
string models perform essentially the same as the 4-F model,
but better than others. We now discuss our results on string
models in detail.

The helicopter view at the models’ estimates tells us that
the constant risk premium in both cross-sectional and time-
series dimensions does not seem to do a good job: the estimate
of the string risk premium is not significant and, sometimes,
comes with a counterintuitive negative sign. In fact, a neg-
ative sign of φ(·, j) for some asset j may turn out to be an
interesting property, as discussed below; however, Model I
estimates imply that, for certain test portfolios, φ(·, j) = φ̄ is
negative, implying that the unit risk-premium is negative for
all j. Furthermore, for half of the test portfolios, there is an



Cross-section without factors: a string model for expected returns 707

Table 6. This table provides parameter estimates of φv0, φv1 and φv2 in the time and cross–
sectional variation premium Model III, φ(yt, j) = φv0�0(j) + (φv1 + φv2e−yt )�1(j) (with
t-stats below), and the pricing performance expressed as the average pricing error (α is
annualized) across a given set of portfolios, and the fit of the model (adjusted-R2, R̄2) from

this regression.

φv0 φv1 φv2 α R̄2

5 × 5 ME-BTM − 1.492 12.596 − 30.290 0.132 0.330
− 0.076 0.696 − 1.654 2.042 –

5 × 5 ME-INV 75.497 − 49.833 24.470 0.212 0.417
3.676 − 2.865 1.276 6.003 –

5 × 5 ME-MOM 37.126 − 20.059 2.667 0.145 0.737
3.543 − 2.107 0.255 12.471 –

5 × 5 ME-REV 27.276 − 9.775 − 7.894 0.099 0.507
1.652 − 0.673 − 0.490 4.836 –

5 × 5 ME-OP 138.671 − 92.983 53.900 0.238 0.891
11.149 − 9.358 5.584 15.532 –

5 × 5 ME-BTM Global 42.508 − 14.140 − 25.249 0.218 0.784
2.669 − 1.163 − 2.158 9.264 –

Table 7. This table provides adjusted-R2 from linear factor
model regressions across the portfolios analzyed in tables 4
through 6. The four columns provide the adjusted-R2 for the
CAPM, the 3-F model (market, value, and size), the 4-F model
(market, value, size, and momentum), and the 5-F model (mar-

ket, size, value, profitability, and investment factors).

CAPM 3-F 4-F 5-F

5 × 5 ME-BTM 0.168 − 0.040 0.186 0.299
5 × 5 ME-INV 0.130 0.442 0.487 0.536
5 × 5 ME-MOM 0.348 − 0.019 0.697 0.369
5 × 5 ME-REV 0.216 0.145 0.225 0.195
5 × 5 ME-OP 0.482 0.105 0.618 0.733
5 × 5 ME-BTM Global − 0.011 0.117 0.202 0.251

insignificant relation between predicted and realized returns.
Finally, the unconditional pricing performance is quite poor,
with R̄2 ranging from negative to less than 20%. Allowing
for variation in the premium in the cross-sectional dimension
turns out to be very important, producing significant param-
eter estimates of φ0 and φ1. For all the test portfolios, the
model has a reasonable pricing fit, with cross-sectional R̄2

varying from 20% to nearly 80%, with the best fit displaying
at the level of the global ME-OP portfolios. Time-variation
in the string risk premium (Model III) provides a marginally
improved performance (see table 6), with results very simi-
lar to those of Model II. Figure 6 provides scatterplots of the
unconditional expected returns predicted by Model III against
average realized returns.

Which portfolios contribute to the unconditional premia
displayed in figure 6? What are the model predictions on
the correlation premia conditional on the realization of yt

(say, C(yt, i) in equation (16))? Figure 7 plots average unit
string premia, φ(ȳ, j), for each portfolio test, across all port-
folios j comprising that test, obtained while fixing the state
variable at the sample value taken by ȳ = − ln Ȳ(1) over the
sample size. In each test, the first 5 portfolios correspond
to those with the smallest size (i.e. in the first quantile) and
are ordered from the lowest to the highest characteristics (for
example, in the case of the 5 × 5 ME-OP portfolio test, from
the lowest to the highest operating profitability); portfolios

from 5i + 1 through 5(i + 1) are ordered similarly, with i = 1
identifying portfolios with the second smallest size quantile,
and i = 4 identifying portfolios with the biggest size. The
picture also depicts average returns on all portfolios.

The unit string premia track the ‘shark-tooth’ pattern of
the portfolios’ expected returns quite well: with the excep-
tion of the first portfolio test (5 × 5 BE-BTM), the higher the
average return on portfolio-j, the higher φ(ȳ, j) in general.
Furthermore, φ(ȳ, j) is negative for both small and big size
portfolios. To facilitate the interpretation of these findings,
recall the heuristic explanations in table 1. The contribution
of portfolio-j to the premium of portfolio-i is proportional to
φ(yt, j)ρ(yt, i, j), where ρ(yt, i, j) is the risk of co-variation that
portfolio-i returns have with j, and φ(yt, j) is the unit risk pre-
mium commanded by any asset for the exposure to portfolio-j
returns. Thus, portfolios with negative φ(ȳ, j) may be inter-
preted as ‘correlation-hedges’, in that assets more exposed to
them require lower overall expected returns. Figure 7 shows
very clearly that small size and big size portfolios are such
correlation hedges. However, exposure to middle size port-
folios commands positive unit string premia. We shall return
to the correlation-hedge properties of big size portfolios in a
moment.

We qualify our findings: How do conditional premia relate
to the average market correlation? The key relation is that
between the unit string premium and �q(j), q ∈ {1, 2}, the
portfolios’ exposures to the average market correlation (see
Section 3.2):

φ (yt, j) = φv0�0 (j) + (
φv1 + φv2e−yt

)
�1 (j) .

These two exposures have a natural interpretation. Note that
the dynamic GCE introduced in (14),

ρ (yt, j) ≡
∫ 1

0
ρ (yt, i, j) di

= �0 (j)︸ ︷︷ ︸
constant connectivity

+ �1 (j) e−yt︸ ︷︷ ︸
conditional connectivity

, (29)

is a measure of total connectivity of portfolio-j to all remain-
ing assets in a given test. Now, the parameter estimates in
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Figure 6. This picture depicts average excess returns and Model III predictions on the unconditional expected excess returns (the uncon-
ditional correlation premium of Proposition 3.2), for 5 × 5 ME-BTM, 5 × 5 ME-INV, 5 × 5 ME-MOM, 5 × 5 ME-REV, 5 × 5 ME-OP, and
5 × 5 ME-BTM Global portfolios.

Table 6 suggest that φv0 > 0, that is, the unit string premium
φ(yt, j) for portfolio-j increases with the constant connectiv-
ity component of portfolio-j, �0(j). The only exception is
the first portfolio test, which, from now on, we shall not
comment on.

More subtle is the relation between the unit string premium
and the variable part of ρ(yt, j) in (29), i.e. the conditional
connectivity of portfolio-j. Note that �1(j) measures the sensi-
tivity of portfolio-j total connectivity to changes in yt. Table 6
estimates suggest that φv1 + φv2e−ŷt < 0 for all ŷt, such that
the unit string premium φ(ŷt, j) decreases with �1(j) for all of
our test portfolios. That is, portfolios with higher �1(j) provide
better correlation hedges. Figure 8 shows that portfolios with
the highest �1(j) tend to be big size, and that these portfolios
also command lower average returns. Note that these proper-
ties are specific to big stocks: in Appendix 3, we find that the
unit string premium generally increases with �1(j) for S&P
500 sectors and index-based portfolios. Furthermore, note that
for some of the test portfolios in Table 6, φv2 < 0; in these
cases, the previous effects become stronger in bad times: the
lower yt, the stronger the inverse relation between the unit
string premium and conditional connectivity. Now, big stocks
provide ‘dynamic correlation-hedges’: after a negative shock

in yt, assets that are more exposed to stocks with higher condi-
tional connectivity (i.e. assets i with a higher ρ(yt, i, j)) require
a lower premium in bad times.

These correlation-hedge properties suggest one interpre-
tation of the low average returns that big stocks display:
big stocks provide some hedging properties, which mani-
fest through the previous correlation-hedge channel; investors
seek exposure to them, and these stocks, then, provide low
average returns. It remains an open question as to why big
stocks’ connectivity increases in bad times, and why investors
seek exposure to them–that is, why big stocks have such hedg-
ing properties. A natural explanation is that big stocks are
likely to be resilient to systemic shocks (i.e. shocks by which
market correlations become high), and that these stocks are
also the most interconnected with the rest of the economy.
Consistent with this hypothesis, we find that big size portfo-
lios are more resilient than small during systemic events, and
quite substantially. Precisely, we calculate quarterly returns
for portfolios in the first (small) and tenth (big) decile and
find that, while these returns average 12.72% and 10.13%,
respectively, big size portfolios realized (annualized) returns
are on average 12.40% higher than small across the nine
systemic events identified in figure 5 (see table 3). Figure 9
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Figure 7. This picture depicts average excess returns and the unit risk premia for each portfolio, with the latter estimated from Model III. The
estimates are performed for 5 × 5 ME-BTM, 5 × 5 ME-INV, 5 × 5 ME-MOM, 5 × 5 ME-REV, 5 × 5 ME-OP, and 5 × 5 ME-BTM Global
portfolios.

depicts these returns in our sample, along with these systemic
events.

When φv2 < 0, assets that are more exposed to big stocks
even require a lower premium in bad times. These properties
imply that some test portfolios, i.e. those for which there is a
sufficiently high exposure to big size portfolios, may exhibit
a cross-section average premium that is pro-cyclical: their
expected returns decrease in times of high market correla-
tions. Figure 10 shows that this is the case of the 5 × 5 ME-
REV and 5 × 5 ME-BTM Global test portfolios. Figure 10
also shows that, in the remaining cases, expected returns may
be both counter-cyclical (5 × 5 ME-INV and 5 × 5 ME-OP)
or non-monotonic in yt (5 × 5 ME-MOM).

4.4. Premium for correlation risk

Next, we examine the model predictions on the premium for
correlation risk. Proposition 3.3 (see Section 3) suggests a
theoretical relation between realized correlations and the pre-
mium for correlation risk. In Section 3 we explained that,
given our parameter estimates, this relation should be roughly
inverse for most of the time (see figure 4). We calculate data
counterparts to this relation. We approximate the premium
for correlation risk with its realized counterpart, defined as

the difference between average correlations (implied and his-
torical) over the past 22 days. We also compute the model-
implied realized premium for correlation risk, estimating
P-correlations through the average correlations ρ(yt; i, j) cal-
culated over the last 22 days, and relying on the estimates of
the state yt in Section 4.2.

Figure 11 plots the results. The model predicts that the pre-
mium for correlation risk is statistically inversely related to
realized correlations, as in the data. In terms of the expla-
nations of Proposition 3.3 in Section 3, in bad times, when
implied and realized correlations are both high, the pre-
mium for correlation risk decreases: implied correlations are
obviously bounded and, then, a further increase in both cor-
relations may translate into a decreasing difference between
implied and realized correlations. Figure 11 shows that this
effect is so strong that the premium for correlation risk is
negatively related to realized correlations.

Because implied correlations are on average higher than
realized, we might, then, also expect that implied correla-
tions move less than one-to-one with realized correlations. It
is indeed the case. Table 8 reports regression estimates that
reveal this property holds both in the data and for the model.
These properties are in contrast with the empirical evidence
in the equity volatility space, where volatility risk-premia
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Figure 8. This picture depicts average excess returns and the sensitivity of the conditional sensitivity, �1(j), for each portfolio, with the latter
estimated from Model III. The estimates are performed for 5 × 5 ME-BTM, 5 × 5 ME-INV, 5 × 5 ME-MOM, 5 × 5 ME-REV, 5 × 5 ME-OP,
and 5 × 5 ME-BTM Global portfolios.

Figure 9. This picture depicts quarterly realized returns of portfolios sorted by size in the first decile (dashed, blue line) and the tenth decile
(‘big size’) (dashed, blue line). The numbered circles identify the same events in figure 5 (see table 3) and are placed around the realization
of big size portfolios returns.
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Figure 10. This picture depicts the relation between the conditional correlation premium predicted by Model III (equally weighted across
all portfolios) and the state variable yt regarding 5 × 5 ME-BTM, 5 × 5 ME-INV, 5 × 5 ME-MOM, 5 × 5 ME-REV, 5 × 5 ME-OP, and 5 × 5
ME-BTM Global portfolios. The red, horizontal line is the unconditional premium for each of these portfolios.

Figure 11. This picture depicts scatterplots of realized premium for correlation risk for S&P 500 stocks against one-month realized
correlations. Blue and red dots identify pairs in the data and pairs predicted by the model, respectively.
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Figure 12. This picture depicts the unconditional premium for correlation risk calculated for horizons equal to 1, 3, 6, 9, and 12 months. The
circles are data estimates, computed as described in the main text. The solid curve depicts model predictions, obtained while fixing parameter
values at the GMM estimates in (27), which rely on one moment condition based on one-month unconditional premium.

Table 8. This table provides estimates
(with standard errors in parenthesis) and
adjusted-R2 for the coefficients a and b
in the linear regression ρQ = a + bρP,
where ρQ is the one-month expected cor-
relation for S&P 500 stocks under the
risk-neutral probability, Q, and ρP is the

one-month realized correlation.

a b R̄2

Data (0.0034) (0.0096) 46%
0.1804 0.6337

Model (0.0015) (0.0038) 76%
0.2508 0.4913

do actually increase in bad times (see Corradi et al.
2013).†

Finally, we examine the model implications on the term
structure of unconditional premia for correlation risk. The
GMM estimator in (27) relies on moment conditions that
include the unconditional one-month premium for correlation
risk. Yet our model allows us to consider any arbitrary hori-
zon. Figure 12 plots the average premium for correlation risk
estimated from data along with the expression for E(P(yt; ϑ))

in (26), calculated with parameter values based on our GMM
estimates. The model reproduces the upward sloping curve in

† Corradi et al. (2013) (Section 4.2.5) provide such evidence rely-
ing on ex-ante volatility risk-premia, within a no-arbitrage model
for equity volatility. In the interest rate volatility space, Mele et
al. (2015) and Mele and Obayashi (2015) study some properties
of the volatility risk-premium, without addressing the issue of the
premium sensitivity to market conditions.

the data and comes close to quantitatively match the uncon-
ditional premia for correlation risk estimated on data at all
horizons up to one year.

5. Conclusion

This paper introduces an arbitrage pricing model by which
the cross-section of expected returns relates to the granular
exposure of each asset return with respect to all remain-
ing returns. That is, we model asset risk premia as being
directly driven by the very same assets’ correlations, and not
by a number of a pre-determined factors. More precisely, our
model takes asset returns to be driven by the realization of
a string, which, then, determines returns co-movements and
the whole set of correlations amongst asset returns. In this
setup, ‘risk’ is, thus, determined by the joint fluctuations of
asset returns in a given universe of securities, and the cross-
section of expected returns reflects the exposures of any given
asset price fluctuations to the fluctuations of the remaining
asset prices. The cross-section of expected returns is sim-
ply given by these exposures, weighted through a premium
functional.

Within this theoretical framework, we specify a number
of models that we use in empirical work. We assume that
the assets correlations in the string are random. While our
econometric methodology only requires asset returns to esti-
mate the cross-section of expected returns, we also use the
cross-section of options on individual S&P500 components
and extract information on the unobserved state underlying
realized correlations at any given point in time. We develop
method-of-moments conditions that we employ to estimate
our model. With our estimates of the state, we reconstruct the
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dynamics of average correlations and premium for correlation
risk, and, naturally, the cross-section of expected returns that
are predicted by the model.

The model predicts the empirical patterns of premia for
correlation risk, but also explains cross-sectional pricing in a
number of portfolios, both in the U.S. and in the international
stock universe, with a performance that is often better than
that of standard linear factor models. The model predictions
shed new light into the empirical properties of big shocks.
Big stocks are correlation-hedges, in that assets that are more
exposed to them require lower expected returns. Under condi-
tions, portfolios particularly exposed to big stocks may even
require lower returns in bad times (when all assets’ correla-
tions spike) than in good. The string model and its granular
methodology provide a flexible and a complementary frame-
work to the standard factor structure that may be used for
cross-sectional asset pricing and also for quantifying risks that
any individual portfolio may have in common with the whole
cross-section of asset returns.
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Appendices

Appendix 1. Proofs

(Proof of Proposition 3.2) Consider, first, the following prelimi-
nary result: for any given �,

Et

(
e−�yT

)
= ā� (T − t) e−b̄�(T−t)�yt , (A1)

where

ā� (x) =
(

2κ

2κ + �η2
(
1 − e−κx

)
) 2κm

η2

,

b̄� (x) = 2κe−κx

2κ + �η2
(
1 − e−κx

) .

Equation (A1) follows by a mere change in notation in a result to be
stated below (see equation (A5)). Taking the limits leaves

E
(

e−�yt

)
= lim

T→∞
Et

(
e−�yT

)
= Ȳ(�),

where Ȳ(�) is defined in the proposition. The expressions for the
unconditional expected returns in Proposition 3.2 immediately fol-
low. �

Before providing the proof of Proposition 3.3, we prove a state-
ment given in the main text regarding the dynamics of the state
variable yt under the risk-neutral probability.

Proposition A.1 (Dynamics of y under Q) Consider two diffusion
processes, xit, i = 1, 2, solutions to equation (20), viz

dxit = (κm − (κ + νiη) xit) dt + η
√

xit dW̃t,

where ν1 > ν2. Then, x1t ≤ x2t a.s.

Proof The drift of x1t is strictly less than the drift of x2t, and the
proposition follows by a comparison theorem (e.g. Karatzas and
Shreve (1991, pp. 291–295)). �

Proof of Proposition 3.3. We provide details regarding the func-
tion w(yt, T − t) ≡ u(yt, τ − t; θ , 0) = Et(e−yT ) in equation (22), as
those regarding EQ

t (e−yT ) follow through a change in notation.
The function w(y, T − τ) satisfies the following partial differential
equation

0 = −w2 (y, T − τ) + κ (m − y) w1 (y, T − τ)

+ 1

2
η2yw11 (y, T − τ) , for all τ ∈ [t, T),

where subscripts denote partial derivatives. The boundary condition
is w(y, 0) = e−y. Conjecture that w(yt, T − t) = eα(T−t)−b(T−t)yt and
plug this suggested function into the previous partial differential
equation. The result is that α and b satisfy the following ordinary
differential equations: for all x ∈ (0, T − t],

⎧⎨
⎩0 = ḃ (x) + κb (x) + 1

2
η2b2 (x)

0 = α̇ (x) + κmb (x)

subject to the boundary conditions α(0) = 0 and b(0) = 1. The solu-
tion for b and α follow by standard integration arguments and details
are available upon request. Equation (22) and, then, equation (21)
follow by taking the exponential, a = eα , and noting that κm = κ̃m̃.

Next, we show that, for ν > 0, P is (i) strictly positive, (ii)
increasing and concave in y for low y, and (iii) decreasing and convex
in y for high y. (Note, also that the arguments below would equally
go through if �1 < 0 and ν < 0.)

The first property directly follows by Proposition A.1. How-
ever, we provide an alternative proof based on an argument that
will be used to deal with the other proofs of the proposition. Note
that the function �u(y, T − t) ≡ u(y, τ − t; θ , ν) − u(y, τ − t; θ , 0)
is solution to the following partial differential equation

0 = L�u (y, T − τ) − νηyu1 (y, T − τ) , for all τ ∈ [t, T), (A2)

where Lf (y, T − t) = ∂
∂t f (y, T − t) + κ(m − y) ∂

∂y f (y, T − t)

+ 1
2 η2y ∂2

∂y2 f (y, T − t), and subject to the boundary condition

�u(y, 0) = 0. Therefore, by the maximum principle for partial differ-
ential equations, we have that the sign of �u(y, T − t) is the same as
the sign of −νηyu1(y, τ − t). Since u(y, τ − t) is strictly decreasing
in y for any finite T, it follows that �u(y, T − t) is strictly positive,
and so is P .

Regarding the second property (increasing and concave for low
y) and the third (decreasing and convex for high y), differenti-
ate equation (A2) two times with respect to y, and denote with
�u1(y, T − t) and �u11(y, T − t) the first and the second partial
of �u(y, T − t) with respect to y. The result is that �u1(y, T − t)
and �u11(y, T − t) are solutions to the following partial differential
equations
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0 = L�u1 (y, T − τ)

+ νηb (T − τ) u (y, T − τ) (1 − b (T − τ) y) , for all τ ∈ [t, T),
(A3)

and

0 = L�u11 (y, T − τ)

− νηb2 (T − τ) u (y, T − τ) (2 − b (T − τ) y) , for all τ ∈ [t, T),
(A4)

subject to the boundary conditions �u1(y, 0) = 0 and �u11(y, 0) =
0.

Equation (A3) can be rearranged to yield

�u1 (yt, T − t)

= νη

∫ T

t
b (T − τ) Et [u (yτ , T − τ) (1 − b (T − τ)) yτ ] dτ

= νηEt [u (yτ , T − τ)]
∫ T

t
b (T − τ) E∗

t [1 − b (T − τ) yτ ] dτ

= νηEt [u (yτ , T − τ)]
∫ T

t
b (T − τ)

[
1 − b (T − τ) E∗

t (yτ )
]

dτ ,

where E∗
t (·) denotes the expectation is taken under the probability

P∗, defined as

dP∗

dP

∣∣∣∣
Fτ

= u (yτ , T − τ)

Et [u (yτ , T − τ)]
.

By the no-crossing property of a diffusion, the expectation E∗
t (yτ ) is

increasing in the initial condition yt and, thus, there exists a threshold
yA (resp., yB) such that for all yt < yA (resp., yt > yB), �u1(yt, T − t)
is positive (resp., negative). Based on equation (A4), we can make
a similar argument and conclude that there exists a threshold yC
(resp., yD) such that for all yt < yC (resp., yt > yD), �u11(yt, T − t)
is negative (resp., positive). �

Proof of Proposition 4.1. The n-th conditional moment of ρ(yT ; �)
is

Et
(
ρn (yT ; �)

) = Et
(
�0 + �1e−yT

)n

= Et

(∑n
i=0

(
n

i

)
�i

0�
n−i
1 e−(n−i)yT

)

=
n∑

i=0

(
n

i

)
�i

0�
n−i
1 Et

(
e−(n−i)yT

)
,

where the second line follows by the binomial formula. Now, by Itô’s
lemma, zi,t ≡ (n − i)yt is solution to

dzi,t = κ
(
mi − zi,t

)
dt + ηi

√
zi,t dWt,

where mi = (n − i)m and ηi = √
n − iη. Therefore, by the expres-

sion for the conditional expectation of e−yT in Proposition 4.1,

Et

(
e−(n−i)yT

)
= ai (T − t) e−bi(T−t)(n−i)yt , (A5)

where, and using the fact that mi/η
2
i = m/η2,

ai (x) =
(

2κ

2κ + η2
i

(
1 − e−κx

)
) 2κm

η2

,

bi (x) = 2κe−κx

2κ + η2
i

(
1 − e−κx

) .

Equation (24) follows by taking the limit E(ρn(yt; �)) = limT→∞
Et(ρ

n(yT ; �)).

Next, we determine the following unconditional uncentered
covariance

cρ�
∞ ≡ lim

T→∞
Et (ρ (yT ; �) ρ (yT+�; �)) . (A6)

We have

Et (ρ (yT ; �) ρ (yT+�; �))

= �2
0 + �0�1

(
Et

(
e−yT

) + Et
(
e−yT+�

)) + �2
1Et

(
e−(yT +yT+�)

)
.

By the Law of Iterated Expectations, and the expression for the
conditional expectation of e−yT in Proposition 3.3,

Et

(
e−(yT +yT+�)

)
= Et

(
e−yT ET

(
e−yT+�

)) = a�Et

(
e−(1+b�)yT

)
,

where a� = a(�; 0) and b� = b(�; 0) and a(x; ν) and a(x; ν) are
as in equation (22) of Proposition 3.3. Applying again the expres-
sion for the conditional expectation of e−yT+� in Proposition 4.1 and
relying on arguments nearly identical to those used to derive the
conditional moment in equation (A5),

Et

(
e−(1+b�)yT

)
= a� (T − t) e−b�(T−t)(1+b�)yt ,

where

a� (x) =
(

2κ

2κ + (1 + b�) η2
(
1 − e−κx

)
) 2κm

η2

,

b� (x) = 2κe−κx

2κ + (1 + b�) η2
(
1 − e−κx

) .

Hence,

Et

(
e−(yT +yT+�)

)
= a�a� (T − t) e−b�(T−t)(1+b�)yt .

Therefore, the limit in (A6) is obtained as

cρ�
∞ = �2

0 + 2�0�1 lim
x→∞ a (x; ν) + �2

1a� lim
x→∞ a� (x)

= �2
0 + 2�0�1

(
2κ

2κ + η2

) 2κm
η2

+ �2
1

(
4κ2

4κ2 + 4κη2 + η4
(
1 − e−κ�

)
) 2κm

η2

.

Equation (25) follows by rearranging terms in

cov (ρ (yt; �) , ρ (yt+�; �)) = cρ�
∞ − E (ρ (yt; �))2 ,

where the expression for E(ρ(yt; �)) is obtained through equation
(24) of the proposition. �

Proof of equation (26) We have, for l > t, and for fixed �t ≡
T − t,

E (P (yt; ϑ)) = lim
l→∞

Et (P (yl; ϑ))

= �1

�t

∫ �t

0
lim

l→∞
Et (u (yl, x; θ , ν) − u (yl , x; θ , 0)) dx.

(A7)

By Proposition 4.1, and arguments similar to those leading to
equation (A5),

Et (u (yl, x; θ , ν)) = a (x; ν) Et

(
e−b(x;ν)yl

)
= a (x; ν) aB (l − t; ν) e−bB(l−t;ν)b(x;ν)yt ,

where

aB (l − t; ν) ≡
(

2κ

2κ + b (x; ν) η2
(
1 − e−κ(l−t)

)
) 2κm

η2

,
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bB (l − t; ν) ≡ 2κe−κ(l−t)

2κ + b (x; ν) η2
(
1 − e−κ(l−t)

) .

Equation (26) follows by calculating the limits in (A7), using the
definition of a(x; ν) and b(x; ν) in Proposition 4.1, and rearranging
terms. �

Appendix 2. Extensions

A.1. A string-and-factor model of asset returns

We extend the model in Section 2 to a market in which asset returns
are strings, but they are also affected by systematic factors driven by
Brownian motions, assuming that

dPt (i) + Dt (i) dt

Pt (i)

= E (yt, i) dt + σ (yt, i) dZt (i) + v (yt, i) dWt, i ∈ (0, 1) , (A8)

where Wt is a standard multidimensional Brownian motion, v(y, i),
is a continuous function, in y and i, and represents the asset returns
exposures to the systematic factors, the ‘betas.’ Remaining notation
is as in equation (1).

The pricing kernel is still as in equation (5), such that repeating the
arguments leading to Proposition 3.3, but relying on equation (A8),
leaves the following expression for the expected excess returns on
any asset-i ∈ (0, 1)

E (yt, i) − r (yt) = C (yt, i) + v (yt, i) λ (yt) , (A9)

where C(y, i) is as in equation (9). Compared to Proposition 2.1, this
formulation adds a standard factor-risk premium to the explanation
of the cross-section of asset returns, v(y, i)λ(y).

A.2. Compound strings

We consider the following extension to equation (1)

dPt (i) + Dt (i) dt

Pt (i)

= Et (yt, i) dt + σ (yt, i) dZt (i) + w (yt, i) dZt (Z, yt) , (A10)

where

dZt (Z, yt) =
∫ 1

0
n (yt, j) dZt (j) dj,

for some functions w(yt, i) and n(yt, i). The additional term,
dZt(Z, yt), is a linear functional of the whole string, and will be
referred to as compound string in the sequel. Note that the state, yt,
may not necessarily be a diffusion process. It may be a string, as in
the example developed in Appendix A.3.

This extension accounts for economies in which each asset return
reacts to shocks in the fundamentals pertaining to all remaining asset
returns, that is, not only to ‘its own point-i’ of the string dZt(i),
but also to dZt(j) for all j, directly. For example, in the illustrative
model of Appendix A.3 , each asset return is driven by a shock
on its dividend and, due to market clearing, on those affecting all
the dividend shares (i.e. the proportions of aggregate dividends paid
by each asset), leading to price dynamics that are a special case of
equation (A10).

By arguments similar to those leading to Proposition 2.1, the
expected excess returns on each asset are now given by

Et (yt, i) − r (yt)

= σ (yt, i)
∫ 1

0
φ (yt, j) ρ (yt, i, j) dj

+ w (yt, i)
∫∫

u,v∈[0,1]2
φ (yt, u) n (yt, v) ρ (yt, u, v) du dv. (A11)

The first term on the R.H.S. of equation (A11) is the expected return
predicted by Proposition 2.1. The second term captures the premium
due to the compound string in equation (A10). In our empirical
work, we rely on the simple specification of the model that gives
rise to Proposition 2.1. However, we now provide an example of a
Consumption-based CAPM that leads to the assumptions underlying
the predictions of equation (A11).

A.3. Example: A consumption-based CAPM

We consider a string version of a multi-asset economy in Mele (2022,
Section 9.9.1, p. 499), that is, an infinite horizon economy with a con-
tinuum of long-lived securities in i ∈ (0, 1). Each of these securities
delivers an instantaneous dividend Dt(i) at time-t, solution to

dDt (i)

Dt (i)
= gt (i) dt + σdt (i) dZt (i) , (A12)

where dZt(i) is a string, and gt(i) and σdt(i) are asset-i dividend
growth and volatility. We denote the string correlation function with
ρ(·, ·), as usual.

We assume that there is a single agent with instantaneous utility
and constant relative risk aversion equal to γ , and subjective discount
rate equal to δ. The model may well be extended throughout more
general specifications of preferences, including habit formation.

Aggregate consumption and pricing kernel. Denote the aggregate
dividends with Dt ≡ ∫ 1

0 Dt(i) di. They satisfy

dDt

Dt
=

(∫ 1

0
gt (i) st (i) di

)
dt +

∫ 1

0
σdt (i) st (i) dZt (i) di, (A13)

where st(i) ≡ Dt(i)
Dt

denotes the ‘dividend share’ of asset-i. In equi-
librium, aggregate dividends equal aggregate consumption, Ct say,
i.e. Dt = Ct. By Itô’s lemma, st(i) satisfies

dst (i)

st (i)
= μs

t (i) dt + σdt (i) dZt (i) −
∫ 1

0
σdt (j) st (j) dZt (j) dj,

(A14)
where, denoting σ 2

dt dt ≡ vart(
dDt
Dt

) and covdid,t dt ≡ covt(
dDt(i)
Dt(i)

,
dDt
Dt

),

μs
t (i) = gt (i) −

∫ 1

0
gt (i) st (i) di + σ 2

dt − covdi,d,t,

σ 2
dt =

∫∫
i,j∈[0,1]2

σdt (i) st (i) ρ (i, j) σdt (j) st (j) di dj,

covdid,t = σdt (i)
∫ 1

0
σdt (j) st (j) ρ (i, j) dj.

It is easy to see that
∫ 1

0 μs
t (i)st(i) di = 0, such that

∫ 1
0 dst(i) = 0.

In this economy, the stochastic discounting factor is ξt =
e−δtC−γ

t . It satisfies

dξt

ξt
= −r dt −

∫ 1

0
φ (st (j)) dZt (j) dj, φ (st (j)) = γ σdt (j) st (j) .

(A15)
Note that φ(st(j)) in equation (A15) is the compensation required to
hold any asset, the returns of which are exposed to co-movements
with the dividends paid by asset-j. Due to the nature of the model
that we are dealing with (consumption-CAPM), the functional form
for φ(·) in equation (A15) resembles that of the unit risk-premia
arising within a multi-asset Brownian economy (see Mele (2022,
equation (9.120))). Because the model in this section relies on
strings, this analogy is only formal: in the model of this appendix,
the unit premium for asset dividend-j compensates for the risk that
any other asset returns are exposed to; in the Brownian model, unit
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premia compensate for each Brownian motion that asset returns are
exposed to.

Asset returns. We make a few simplifying assumptions to render
the model analytically tractable. We assume that the representative
agent has log-utility, γ = 1, and that the drift of each share process
in (A14) is linear in st(i). These assumptions lead to an affine model
for the inverse of the price-dividend ratio, p(st(i)) say, similar as
in Menzly et al. (2004) (MSV, in the sequel) (see equation (A17)
below). Asset returns are, then, shown to be

dPt (i) + Dt (i) dt

Pt (i)
= Et (i) dt + σdt (i)

(
1 + p′ (st (i))

p (st (i))
st (i)

)
︸ ︷︷ ︸

≡σ(st ,i)

dZt (i)

− p′ (st (i))

p (st (i))
st (i)︸ ︷︷ ︸

≡−w(st ,i)

dZt (Z, st) , (A16)

where dZt(Z, st) ≡ ∫ 1
0 σdt(j)st(j) dZt(j) dj, a compound string.

Equation (A16) is then a special case of equation (A10): the state
is yt = st = (st(i))i∈(0,1), the collection of all the share processes,
and the compound string is dZt(Z, st), with n(st, j) = σdt(j)st(j). That
is, while each asset return depends on its own share process, each
share process is driven by the realization of the whole string (see
equation (A14)). Therefore, in equilibrium, asset returns are also
driven by a compound string. In this economy, the volatility of asset-
i returns originates from two forces. The first is the volatility of
the asset dividend growth, σdt(i). The second stems from fluctua-
tions in its price-dividend ratio, p(st(i)), which, in turn, originate
from those in the dividend share, st(i): the higher the semi-elasticity
of p(st(i)), the more significant is this second source of volatility.
The term σ(st, i) reflects both dividend volatility and price-dividend
ratio volatility. Instead, w(st, i) only reflects price-dividend volatil-
ity. Note, also, that the price-dividend volatility determines how the
realization of the compound string affects asset returns.

Expected returns on each asset, Et(i), can now be determined
through correlations and volatility, based on equation (A11). These
details are in Proposition A.2 below, and in its proof. First, we derive
the price-dividend ratios in this economy under the assumptions
formulated so far, and additional ones.

Price-dividend ratios. Consider the general formulation for the
price-dividend ratio for each asset

p (st, i) ≡ Pt (i)

Dt (i)
= Et

(∫ ∞

t

ξu

ξt

Du

Dt

su (i)

st (i)
du

)
.

That is, in principle, the price-dividend ratio of any asset depends
on the future paths of aggregate dividends, which, in turn, depend
on the collection of all the shares process, st. This dimensionality
problem simplifies when γ = 1, in which case, the price-dividend
ratio on asset-i only depends on the asset relative share. Under the
additional assumption that, in (A14), μs

t (i)st(i) = β(s̄i − st(i)), for
some (s̄i)i∈(0,1) and β, we have that p(st(i)) ≡ p(st, i), where

p (st (i)) = 1

δ + β
+ β

δ (δ + β)

s̄i

st (i)
. (A17)

The constants (s̄i)i∈(0,1) satisfy
∫ 1

0 s̄j dj = 1, and β is constant in time
and across assets, such that the shares sum up to one for all t. Note
that the price-dividend ratio has the same functional form as in MSV.
However, the model implications on the correlation of asset returns
and the cross-section of expected returns are distinct, as we now
explain.

Let covs(i),d ,t dt ≡ cov( dst(i)
st(i)

, dDt
Dt

) and covsi,dj,t dt ≡ cov( dst(i)
st(i)

,
dDt(j)
Dt(j)

). We have:

Proposition A.2 (Correlation and expected returns) We have

Et (st, i) − r (st) = σ 2
dt + 1

1 + β
δ

s̄i
st(i)

covsi,d,t, (A18)

where

covsi,d,t

=
∫ 1

0
st (j) σdt (j)

(
σdt (i) ρ (i, j) −

∫ 1

0
ρ (j, u) σdt (u) st (u) du

)
︸ ︷︷ ︸

=covsi ,dj ,t

dj.

(A19)

Proof By equation (A11), and the expression for the unit prices
of risk, φ(st(j)) = σdt(j)st(j), the cross-section of expected excess
returns is

Et (st, i) − r (st)

= σ (st, i)
∫ 1

0
σdt (j) st (j) ρ (i, j) dj

+ w (st, i)
∫∫

u,v∈[0,1]2
σdt (u) st (u) n (st, v) ρ (u, v) du dv︸ ︷︷ ︸

=σ 2
dt

, (A20)

where the term indicated in the brackets coincides with σ 2
dt

due to the expression of n(st, v) predicted by this model,
n(st, v) = σdt(v)st(v). Replacing the expressions for σ(st, i) (see
equation (A16)) into (A20), leaves

Et (st, i) − r (st)

= (1 − w (st, i)) σdt (i)
∫ 1

0
σdt (j) st (j) ρ (i, j) dj

+ (1 + w (st, i) − 1) σ 2
dt

= σ 2
dt + (1 − w (st, i))

(
σdt (i)

∫ 1

0
σdt (j) st (j) ρ (i, j) dj − σ 2

dt

)

= σ 2
dt + (1 − w (st, i))

(∫ 1

0
σdt (j) st (j) (σdt (i) ρ (i, j)

−
∫ 1

0
ρ (j, u) σdt (u) st (u) du

)
dj

)
,

where the last line follows by the expression for σ 2
dt. equation (A18)

follows by the definition of w(st, i) and by a direct calculation. �

The first term on the R.H.S. of equation (A18), σ 2
dt, is the standard

single Lucas’ tree prediction. The second term can take either sign.
For any asset-i such that the values of covsi,dj,t across j make this
second term positive, the expected excess returns are increasing in
st(i). Intuitively, asset-i is not a good hedge if its share is positively
correlated with a sufficiently large set of the assets’ dividends. In this
case, the expected return on asset-i is increasing in st(i), as this asset
pays a larger portion of consumption. This conclusion is reversed
(that is, the second term of the R.H.S. in (A18) is negative) when
the covariance between asset-i share is negatively correlated with a
sufficiently large set of the assets’ dividends.

Note that in multi-asset economies with dividends driven by
Brownian motions, expected excess returns that go beyond the stan-
dard Lucas’ tree prediction are also explained by the covariance
of the share process with aggregate consumption, just as in (A18)
(see Mele (2022, equation (9.129), p. 502)). However, the Brownian
model does not disentangle volatilities from correlations: if m and d
denote the number of assets and Brownian motions, it is possible to
show that covsi,d,t = ∑m

j=1st(j)covsi,dj,t, but the covariance term,

covsi,dj,t = vd,t (j) ·
⎛
⎝vd,t (j) −

m∑
j=1

st (u) vd,t (u)

⎞
⎠ ,

includes dividends’ exposures to Brownian motions, the d-
dimensional vectors vd,t(·) (the counterparts to the components of
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v(yt, ·) in equation (4) of the main text), which do not separate divi-
dends’ volatility from correlation, as in the string model (see (A19)).
Finally, the model in this section is distinct from that in MSV for two
reasons: (i) in our model, aggregate consumption is not I.I.D., but
results from aggregation (see equation (A13 )); (ii) ours is a string
model.

Appendix 3. Additional empirical evidence

Table A1 provides parameter estimates and adjusted-R2 of Model III
(see Proposition 3.2, equation (17)) for S&P 500 sectors and index-
based portfolios. Table A2 provides adjusted-R2 for linear factor
models fitted to the same portfolios in table A1.

Table A1. This table provides parameter estimates of φv0, φv1 and φv2 in the time and cross–
sectional variation premium Model III, φ(yt, j) = φv0�0(j) + (φv1 + φv2e−yt )�1(j) (with t-stats
below), and the pricing performance expressed as the average pricing error (α is annualized)
across a given set of portfolios, and the fit of the model (adjusted-R2, R̄2) from this regression.
The first column provides the number of stocks in each portfolio (J). The last line provides the

average adjusted-R2 across all portfolios for each model.

J φv0 φv1 φv2 α R̄2

ENERGY 34 − 34.458 19.024 − 1.129 0.055 0.513
− 2.890 1.937 − 0.113 1.612 –

MATERIALS 32 − 76.475 37.816 − 5.737 0.110 0.517
− 1.763 1.350 − 0.274 4.712 –

INDUSTRIALS 76 132.112 − 70.574 41.356 0.073 0.181
1.700 − 1.799 2.354 2.303 –

CONS. DISCRET. 79 51.391 − 28.591 20.876 0.086 0.088
0.969 − 0.931 0.926 3.674 –

CONS. STAPLES 35 − 98.597 24.520 35.578 0.294 0.523
− 1.229 0.462 0.775 4.318 –

HEALTH 48 − 62.965 30.130 − 1.497 0.003 0.401
− 0.747 0.610 − 0.046 0.070 –

FINANCIALS 71 − 30.543 13.839 − 1.601 0.116 0.636
− 6.684 3.863 − 0.308 7.081 –

TECHNOLOGY 51 49.876 − 43.341 50.427 0.108 0.189
2.253 − 2.674 3.060 2.119 –

UTILITIES 28 − 15.420 11.473 − 13.129 0.179 0.374
− 1.055 0.823 − 0.866 10.235 –

SP 100 107 − 14.767 2.637 8.127 0.102 0.049
− 0.892 0.229 0.653 5.905 –

DOW JONES 30 37 48.786 -46.909 60.455 0.071 0.151
1.761 − 2.344 2.737 2.023 –

NASDAQ 100 109 − 41.579 7.477 25.557 0.052 0.256
− 1.616 0.551 2.732 1.959 –

Average R̄2 0.429

Table A2. This table provides adjusted-R2 from linear factor model regressions
across the portfolios in Table A1. The first column provides the number of stocks
in each portfolio (J). The second through the fourth provide adjusted-R2 for the
CAPM, the 3-F model (market, value, and size), the 4-F model (market, value,
size, and momentum), and the 5-F model (market, size, value, profitability, and
investment factors). The last line provides the average adjusted-R2 across all

portfolios for each model.

J CAPM 3-F 4-F 5-F

ENERGY 34 0.216 0.311 0.431 0.344
MATERIALS 32 0.092 0.214 0.306 0.347
INDUSTRIALS 76 0.079 0.157 0.449 0.350
CONS. DISCRET. 79 − 0.001 0.210 0.345 0.266
CONS. STAPLES 35 − 0.028 0.143 0.408 0.184
HEALTH 48 0.492 0.633 0.731 0.668
FINANCIALS 71 0.026 0.247 0.299 0.267
TECHNOLOGY 51 0.134 0.305 0.506 0.386
UTILITIES 28 0.677 0.650 0.748 0.750
SP 100 107 0.092 0.313 0.524 0.297
DOW JONES 30 37 − 0.020 0.110 0.371 0.342
NASDAQ 100 109 0.074 0.130 0.346 0.224
Average R̄2 – 0.178 0.226 0.436 0.379
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